Accelerating temporal action proposal generation via high performance computing
作者:Tian Wang, Shiye Lei, Youyou Jiang, Choi Chang, Hichem Snoussi, Guangcun Shan, Yao Fu
摘要
Temporal action proposal generation aims to output the starting and ending times of each potential action for long videos and often suffers from high computation cost. To address the issue, we propose a new temporal convolution network called Multipath Temporal ConvNet (MTCN). In our work, one novel high performance ring parallel architecture based is further introduced into temporal action proposal generation in order to respond to the requirements of large memory occupation and a large number of videos. Remarkably, the total data transmission is reduced by adding a connection between multiple-computing load in the newly developed architecture. Compared to the traditional Parameter Server architecture, our parallel architecture has higher efficiency on temporal action detection tasks with multiple GPUs. We conduct experiments on ActivityNet-1.3 and THUMOS14, where our method outperforms-other state-of-art temporal action detection methods with high recall and high temporal precision. In addition, a time metric is further proposed here to evaluate the speed performancein the distributed training process.
论文关键词:temporal convolution, temporal action proposal eneration, deep learning
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11704-021-0173-7