Meta-BN Net for few-shot learning
作者:Wei Gao, Mingwen Shao, Jun Shu, Xinkai Zhuang
摘要
In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models or algorithms, our approach extends batch normalization, an essential part of current deep neural network training, whose potential has not been fully explored. In particular, a meta-module is introduced to learn to generate more powerful affine transformation parameters, known as σ and β, in the batch normalization layer adaptively so that the representation ability of batch normalization can be activated. The experimental results on miniImageNet demonstrate that Meta-BN Net not only outperforms the baseline methods at a large margin but also is competitive with recent state-of-the-art few-shot learning methods. We also conduct experiments on Fewshot-CIFAR100 and CUB datasets, and the results show that our approach is effective to boost the performance of weak baseline networks. We believe our findings can motivate to explore the undiscovered capacity of base components in a neural network as well as more efficient few-shot learning methods.
论文关键词:meta-learning, few-shot learning, batch normalization
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11704-021-1237-4