Computing infrastructure for big data processing

作者:Ling Liu

摘要

With computing systems undergone a fundamental transformation from single-processor devices at the turn of the century to the ubiquitous and networked devices and the warehouse-scale computing via the cloud, the parallelism has become ubiquitous at many levels. At micro level, parallelisms are being explored from the underlying circuits, to pipelining and instruction level parallelism on multi-cores or many cores on a chip as well as in a machine. From macro level, parallelisms are being promoted from multiple machines on a rack, many racks in a data center, to the globally shared infrastructure of the Internet. With the push of big data, we are entering a new era of parallel computing driven by novel and ground breaking research innovation on elastic parallelism and scalability. In this paper, we will give an overview of computing infrastructure for big data processing, focusing on architectural, storage and networking challenges of supporting big data paper. We will briefly discuss emerging computing infrastructure and technologies that are promising for improving data parallelism, task parallelism and encouraging vertical and horizontal computation parallelism.

论文关键词:big data, cloud computing, data analytics, elastic scalability, heterogeneous computing, GPU, PCM, big data processing

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11704-013-3900-x