正则化和数据增强对模型的影响并不总是好的:The Effects of Regularization and Data Augmentation are Class Dependent

标签:正则化,过拟合 时间:2022-07-01 21:22:49.489 发布者:小木

论文名:The Effects of Regularization and Data Augmentation are Class Dependent
发布时间:2022年4月
论文地址:https://arxiv.org/abs/2204.03632
代码地址:

原文摘要:正则化是一种基本技术,通过限制模型的复杂性来防止过度拟合并提高泛化性能。目前的深度网络严重依赖正则化器,如数据增强(DA)或权重衰减,并采用结构风险最小化,即交叉验证,以选择最佳的正则化超参数。在这项研究中,我们证明了DA或权重衰减等技术产生了一个复杂度降低的模型,该模型在不同类别中是不公平的。从交叉验证中发现的最佳DA或权重衰减量在某些类别上会导致灾难性的模型表现,例如,在Imagenet的resnet50上,仅通过在训练期间引入随机作物DA,"谷仓蜘蛛 "的分类测试精度就从68%下降到46%。更令人惊讶的是,这种性能下降也出现在引入无信息的正则化技术,如权重衰减。这些结果表明,我们对不断提高泛化性能的追求--在所有类别和样本上的平均值--使我们的模型和正则化器在某些类别上默默地牺牲了性能。这种情况在将模型部署到下游任务时可能变得很危险,例如,在Imagenet预训练阶段引入随机作物DA时,部署在INaturalist上的Imagenet预训练resnet50在类#8889上的表现从70%下降到30%。这些结果表明,设计没有类别依赖性偏差的新型正则器仍然是一个开放的研究问题。 通过www.DeepL.com/Translator(免费版)翻译