标签:#LSTM##RNN##深度学习# 时间:2019/03/23 15:34:00 作者:小木
大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例
深度学习之GRU神经网络
深度学习之Attention机制
深度学习之Encoder-Decoder架构
深度学习之RNN模型
[翻译]应用到文本领域的卷积方法
Batch Normalization应该在激活函数之前使用还是激活函数之后使用?
Saleforce发布最新的开源语言-视觉处理深度学习库LAVIS
深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?
指标函数(Metrics Function)和损失函数(Loss Function)的区别是什么?
亚马逊近线性大规模模型训练加速库MiCS来了!
Hugging Face发布最新的深度学习模型评估库Evaluate!
XLNet基本思想简介以及为什么它优于BERT
开源版本的GPT-3来临!Meta发布OPT大语言模型!
超越Cross-Entropy Loss(交叉熵损失)的新损失函数——PolyLoss简介
强烈推荐斯坦福大学的深度学习示意图网站
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
回归模型中的交互项简介(Interactions in Regression)
贝塔分布(Beta Distribution)简介及其应用
矩母函数简介(Moment-generating function)
使用R语言进行K-means聚类并分析结果
普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
H5文件简介和使用
深度学习技巧之Early Stopping(早停法)
手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署
Wishart分布简介