大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Assistant API是OpenAI提供的一个大模型助手类的接口,可以让开发者更加自由、准确地构建类AI Assitant系统。一个AI Assistant可以利用大模型、工具和文件来响应用户的问题。
今天The Information独家披露了一个令人兴奋的消息,那就是OpenAI正在开发一种Agent产品,可以通过控制用户的设备来帮助用户完成复杂的任务。
此前OpenAI的ChatGPT Plus版本为GPT-4模型提供了多个强大的插件供大家使用,包括基于Bing的带网络浏览的Browse、文本生成图片的DALL·E3、高级数据分析功能等。就在几个小时前,OpenAI的部分用户收到了官方的一个非常重磅的更新,即上传任意文档的分析以及整合了所有工具后的GPT-4!这个功能被称为GPT-4(All Tools)!这个工具可以在一次对话中自主选择调用多个不同工具完成用户的输入指令,非常接近AI Agent形态!
尽管开源的大语言模型发展非常迅速,但是,在以大语言模型作为核心的新一代AI Agent解决方案上,开源大语言模型比商业模型表现要明显地差。为了提高大语言模型作为AI Agent的表现和能力,清华大学和智谱AI推出了一种新的方案,AgentTuning,可以将有效增强开源大语言模型作为AI Agent的能力。
所谓AI Agent就是一个以LLM为核心控制器的一个代理系统。业界开源的项目如AutoGPT、GPT-Engineer和BabyAGI等,都是类似的例子。然而,并不是所有的AI Agent都有很好的表现,其核心还是取决于LLM的水平。尽管LLM已经在许多NLP任务上取得进步,但它们作为代理完成实际任务的能力缺乏系统的评估。清华大学KEG与数据挖掘小组(就是发布ChatGLM模型)发布了一个最新大模型AI Agent能力评测数据集,对当前大模型作为AI Agent的能力做了综合测评,结果十分有趣。
最近几天AutoGPT十分火热,这是由开发者Significant Gravitas推出的项目。该项目可以根据你设置的目标,使用GPT-4自动帮你完成所有的任务。你只要提供OpenAI的API Key,保证里面有钱,那么它就可以根据你设定的目标,采用Google搜索、浏览网站、执行脚本等方式帮你完成目标。
AI Agent被很多人认为是未来大模型的发展方向。此前,OpenAI安全团队负责人人Lilian Weng也发布了一篇详细介绍AI自动代理机器人的博客,引起了很多人的关注。7月份发布的MetaGPT是一个全新的AI Agent项目,它基于GPT-4提供了专注于软件开发的自动代理框架,几乎可以理解为配备了产品经历、系统设计师、程序员的一个小团队,可以基于原始的需求直接生成最后的代码项目。本文主要介绍一下这个项目,并分析一下背后的实现方式。
当前大模型本质是一种大语言模型(Large Language Models, LLM),其核心能力是对语言的处理。良好的意图识别和文本生成能力让LLM超越了之前的模型,有了巨大的实用价值。但是,现实问题涉及了很多超越语言模型之外的能力,如基于最新数据的文本摘要、向用户提供实时数据分析和可视化结果、为代码提供debugging等。目前,让LLM解决这些问题的一个最有前景的方向就是建立大模型驱动的自动代理。也就是让LLM作为核心控制者来学会使用不同工具,进而完成最终任务。
今天,HuggingFace官方宣布了Transformers最大胆的功能:Transformers Agents。这是继AutoGPT开创性发布之后,AI Agent被业界接受的另一个重要的里程碑。
全球最大的39亿参数的text-to-image预训练模型发布
7种交叉验证(Cross-validation)技术简介(附代码示例)
智谱AI发布国产最强大模型GLM4,理解评测与数学能力仅次于Gemini Ultra和GPT-4,编程能力超过Gemini-pro,还有对标GPTs商店的GLMs
通用人工智能(AGI)再往前一步:MetaAI发布新的能听会说的多模态AI大模型ImageBind
阿里巴巴开源国内最大参数规模大语言模型——高达720亿参数规模的Qwen-72B发布!还有一个可以在手机上运行的18亿参数的Qwen-1.8B