大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。
LangChain是当前大模型应用开发领域里面最火热的框架。由于其提供了丰富的数据访问接口、各种大模型的交互接口以及很多构造大模型应用所需要的方法与实践工具,受到了很多人的关注。然而,今天Hacker News上的一位开发者直接提出LangChain是一个无用的框架,引起了很多人的共鸣。很多人都表示,在实际开发中,LangChain有很多问题,可能并不适合用来做大模型应用开发。
吴恩达的DeepLearningAI在今天和LangChain的创始人一起合作发布了一个最新的基于LangChain使用LLM构建私有数据的问答系统和聊天机器人的课程(课程名:《LangChain: Chat with Your Data》)。LangChain是大语言模型应用开发领域目前最火的开源库。集成十分多的优秀特性,可以帮助我们非常简单构建LLM的应用。