大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?
在我们给推荐问题建模时,神秘的正则化项L0、L1、L2的选择对模型很重要。为什么要加正则化?正则化有哪几种形式?到底该选择哪种正则化来建模呢?正则化项与推荐问题的关系?
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果
UWMadison前统计学教授详解大模型训练最重要的方法RLHF,RLHF原理、LLaMA2的RLHF详解以及RLHF替代方法
OpenAI可能即将增加按年付费的选项,一年的ChatGPT Plus仅需200美元
吴恩达联合OpenAI推出免费的面向开发者的ChatGPT Prompt工程课程——ChatGPT Prompt Engineering for Developers
OpenAI发布企业使用的ChatGPT:没有限制且更快的GPT-4、数据隔离、基于GPT-4的高级数据分析功能,但是暂不支持私有化部署
【转载】全面解读ICML 2017五大研究热点 | 腾讯AI Lab独家解析
开源领域大语言模型再上台阶:Databricks开源1320亿参数规模的混合专家大语言模型DBRX-16×12B,评测表现超过Mixtral-8×7B-MoE,免费商用授权!