大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
多项式分布是非常常见的分布,他是二项分布在多维上的推广。例如掷骰子结果中,1-6点出现的次数就是一个多项式分布。多项式分布在如主题建模中非常常见,本文将讲述多项式分布的贝叶斯推导过程。
高斯混合模型是一个参数概率密度函数,它是一组高斯密度函数的加权求和。在生物统计领域,高斯混合模型通常是连续测度或者特征的概率分布的参数模型。高斯混合模型可以使用迭代的EM算法或者最大后验概率法估计参数。
贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。
变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术。它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(parameters)和潜变量(latent variables)。
多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导
在统计学中,矩母函数是一个关于随机变量的实值函数,它可以替代密度函数来描述分布。也就是说,出了概率密度函数外,我们也可以通过矩母函数来描述分布。
Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。
狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活