大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
SQLCoder 是 Defog 团队推出的一款前沿的语言模型,专门用于将自然语言问题转化为 SQL 查询。这是一个拥有150亿参数的模型,其性能略微超过了 gpt-3.5-turbo 在自然语言到 SQL 生成任务上,并且显著地超越了所有流行的开源模型。更令人震惊的是,尽管 SQLCoder 的大小只有 text-davinci-003 的十分之一,但其性能却远超后者。
Allen Institute for AI简称AI2,是2014年成立的一个非营利性研究组织,其创办者是之前的微软联合创始人Paul G. Allen。目前该组织主导了几个非常大的项目,希望借助AI来推动科学、医学等领域的进步。此前也开源过大模型OLMo等。这次是该组织第一份发布AI数据集相关的项目,名称位Dolma,是一个包含了3万亿tokens的数据集,目前第一版本仅仅包含英文。
开源大语言模型的发展非常迅速,其强大的能力也吸引了很多人的尝试与体验。尽管预训练大语言模型的使用并不复杂,但是,因为其对GPU资源的消耗很大,导致很多人并不能很好地运行加载模型,也做了很多浪费时间的工作。其中一个比较的的问题就是很多人并不知道自己的显卡支持多大参数规模的模型运行。本文将针对这个问题做一个非常简单的介绍和估算。
Stable Diffusion XL是StabilityAI最新的开源模型。是目前业界流行的免费开源图像生成大模型。2023年4月份StabilityAI就宣布了SD XL的存在并在2023年7月26日开源。SD XL相比较此前的模型速度更快、提示词更短、生成的图像更加真实。但是,大多数人可能并没有实际运行过,感受过这个模型的魅力。在这篇博客中,我们给大家展示如何利用Google Colab的免费GPU资源,部署一个SD XL模型,并通过prompt生成一些图片。
刚刚,吴恩达宣布deeplearning.ai 与 Cohere 合作推出了一个新课程:“Large Language Models with Semantic Search”。这个课程主要教授大家如何使用LLMs进行语义搜索,还提供了大量实践经验,来克服搜索结果和准确性等挑战。
今天, Analytics India Magazine披露了说ChatGPT每天的运行成本70万美元左右,以及七月份ChatGPT月活人数也环比上月降低2亿,只剩15亿用户左右。而硅谷著名风投A16Z(Andreessen Horowitz)也透露了一些OpenAI的数据我们可以一起看看。
XVERSE-13B是元象开源的一个大语言模型,发布一周后就登顶HuggingFace流行趋势榜。该模型最大的特点是支持多语言,其中文和英文水平都十分优异,在评测结果上超过了Baichuan-13B,与ChatGLM2-12B差不多,不过ChatGLM2-12B是收费模型,而XVERSE-13B是免费商用授权!
WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!
电影《流浪地球2》里面一个非常重要的情节就是数字生命计划。将人类的意识上传到计算机之后,可以通过AI技术让人类以数字化的形式在计算机中存活。而今天HeyGen官方宣布的即将推出的真人视频生成技术,可以根据真人的照片生成非常逼真的数字人视频,其动作、表情、声音等全部由AI技术生成,而几乎无法分辨是真人拍摄的视频还是AI生成的视频。
AI Playground最近的LLaMA2、Stable Diffusion XL等模型的进展也让大家看到了最新最强大的模型的能力。但是,对于大多数人来说,这些模型的使用依然具有较高的门槛,除了硬件资源消耗大,本身的部署也不容易。而支撑这些模型的一个重要的硬件因素就是英伟达的显卡。显卡已经超越一般理财,变得越来越贵。因此,基于大模型的免费服务成本也很高,而今天,英伟达官方的NGC网站推出了新的几款可以免费使用的大模型,包括聊天大模型LLaMA2、文本生成图片大模型Stable Diffusion等,基于
所谓AI Agent就是一个以LLM为核心控制器的一个代理系统。业界开源的项目如AutoGPT、GPT-Engineer和BabyAGI等,都是类似的例子。然而,并不是所有的AI Agent都有很好的表现,其核心还是取决于LLM的水平。尽管LLM已经在许多NLP任务上取得进步,但它们作为代理完成实际任务的能力缺乏系统的评估。清华大学KEG与数据挖掘小组(就是发布ChatGLM模型)发布了一个最新大模型AI Agent能力评测数据集,对当前大模型作为AI Agent的能力做了综合测评,结果十分有趣。
最近几天AutoGPT十分火热,这是由开发者Significant Gravitas推出的项目。该项目可以根据你设置的目标,使用GPT-4自动帮你完成所有的任务。你只要提供OpenAI的API Key,保证里面有钱,那么它就可以根据你设定的目标,采用Google搜索、浏览网站、执行脚本等方式帮你完成目标。
Embedding模型作为大语言模型(Large Language Model,LLM)的一个重要辅助,是很多LLM应用必不可少的部分。但是,现实中开源的Emebdding模型却很少。最近,北京智源人工智能研究院(BAAI)开源了BGE系列Embedding模型,不仅在MTEB排行榜中登顶冠军,还是免费商用授权的大模型,支持中文,应该可以满足相当多人的需要。
AI Agent被很多人认为是未来大模型的发展方向。此前,OpenAI安全团队负责人人Lilian Weng也发布了一篇详细介绍AI自动代理机器人的博客,引起了很多人的关注。7月份发布的MetaGPT是一个全新的AI Agent项目,它基于GPT-4提供了专注于软件开发的自动代理框架,几乎可以理解为配备了产品经历、系统设计师、程序员的一个小团队,可以基于原始的需求直接生成最后的代码项目。本文主要介绍一下这个项目,并分析一下背后的实现方式。
文中整理和总结了几个关于开源大模型微调方面的问题,答案主要来自gpt4 + google,如果其中部分问题的答案不准确,烦劳指正 (文中引用了外部资源链接,如果涉及版权问题,烦劳联系作者删除)