大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。
使用SpringMVC创建Web工程并使用SpringSecurity进行权限控制的详细配置方法
大模型领域的GGML是什么?GGML格式的大模型文件与原有文件有什么不同?它是谁提出的?如何使用?
OpenAI的GPT模型API接口新增的top_logprobs和logprobs参数是什么?有什么用处?为什么说这个参数可以帮助我们减轻大模型幻觉问题
一个基于Python的机器学习项目——各种Kaggle比赛的解决方案
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)