大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Kaggle是机器学习竞赛平台当之无愧的老大,除了提供了平台让企业和研究机构发布机器学习相关竞赛来让大家竞技和交流以外,他们还提供了免费的编程平台让大家使用免费的GPU和内存来训练模型和测试模型效果。而昨天,Kaggle升级了这些免费资源服务。
kaggle是各类机器学习竞赛的著名平台,上面聚集了大量的机器学习比赛和数据集,也有大量的数据处理相关专业人员。每年官方都会向平台用户发放问卷,调查数据科学家的工具使用和平台采用情况。今年的调查结果也在两天前发出,有很多有意思的结论。
对于分类特征的处理,sklearn中常见的方法有两种,一种是OneHotEncoder,另一种很多人说是LabelEncoder,其实不对。sklearn中,还有一个OrdinalEncoder,二者似乎一样,但其实并不相同,差别很大。本文将用Kaggle的房价预测的实例来描述如何这些差异以及不同处理对预测算法的影响。
这是一位热心网友(faridrashidi)收集的Kaggle竞赛的解决方案。这是在过去的Kaggle竞赛中表现最好的选手所分享的几乎所有可用的解决方案和想法的列表。一旦有新的比赛结束,这个列表就会更新。