仙宫云4090显卡租赁

大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~

Card image cap
检索增强生成(RAG)

大模型检索增强生成是一种结合了大规模语言模型的自动生成能力和针对特定数据的检索机制,以提供更准确、信息丰富的输出内容的技术。

查看RAG合集
Card image cap
Long Context

大模型对长上下文的处理能力在于它们能够理解和维持较长篇幅的文本连贯性,有助于提升质量,以及对复杂问题和讨论的理解和回应质量。

LongContext合集
Card image cap
AI Agent

大模型的AI Agent是一种高级智能系统,能够理解复杂的指令和查询,并以人类般的方式生成响应、执行任务或提供决策支持。

AI Agent合集
OpenAI开始提供大模型(GPT系列模型)的提示缓存(Prompt Caching):GPT-4o系列模型输入价格下降一半,访问速度提升80%

在大模型的应用中,处理复杂请求往往伴随着较高的延迟和成本,尤其是当请求内容存在大量重复部分时。这种“慢请求”的问题,特别是在长提示和高频交互的场景中,显得尤为突出。为了应对这一挑战,OpenAI 最近推出了 **提示缓存(Prompt Caching)** 功能。这项新技术通过缓存模型处理过的相同前缀部分,避免了重复计算,从而大幅减少了请求的响应时间和相关成本。特别是对于包含静态内容的长提示请求,提示缓存能够显著提高效率,降低运行开销。本文将详细介绍这项功能的工作原理、支持的模型,以及如何通过合理的提示结

OpenAI的推理大模型o1模型的强有力竞争者!DeepSeekAI发布DeepSeek-R1-Lite-Preview~实测结果令人惊喜!

OpenAI的o1模型被认为是大模型领域中推理能力最强的代表之一,由于其强大的数学逻辑推理能力,被认为是大模型未来的进化方向。而就在2个月之后的11月快结束的时间里,幻方量化旗下人工智能企业DeepSeekAI发布了全新的DeepSeek-R1-Lite-Preview模型,号称是o1模型的有力挑战者。该模型利用了类似的o1的思维链思索过程,推理能力大幅增强。DataLearnerAI将在本文中对该模型进行介绍,并进行几个简单的对比结果测试。结果证明这个模型是非常优秀的!

阿里开源推理大模型QwQ-32B-Preview:开源领域对OpenAI o1模型奋起直追,能力接近o1-mini,超过GPT-4o!

随着OpenAI发布推理大模型o1,专注于推理能力的大模型开始被广泛关注。基于思维链探索的推理大模型也不断涌现。此前,DeepSeekAI与上海人工智能实验室都发布过推理大模型,也展现了很不错的推理能力,虽然DeepSeekAI官方承诺该模型会开源,但是目前还没有发布。今天,阿里开源了一个全新的推理大模型QwQ-32B-Preview,其推理能力在评测结果上超过o1-mini,是目前开源领域最强的推理大模型(也可能是目前唯一)。

OpenAI最新的推理大模型o1与GPT-4o有什么区别?o1一定比o1 mini更强吗?一文总结OpenAI对o1模型的官方答疑

OpenAI的o1模型是当前最强大的具有超强推理能力的大语言模型。但是,o1模型本身的能力如何,o1版本和o1-mini版本模型的差异在哪等似乎都很不清晰。为此,OpenAI在Twitter上举办了一次AMA(Ask me anything)活动,解答了很多大家关心的问题。在这篇博客中,我们根据这个讨论结果总结了一下其中比较重要的信息供大家参考。

传闻OpenAI内部大模型推理能力获得进展,Q*项目进化成Strawberry!并且距离发布时间更近了!

尽管各家大模型技术进展神速,但是在复杂任务的推理上,大模型目前依然较弱。在去年底,各方消息透露,OpenAI内部有一个称为Q\*的项目取得了重大的突破,可以大幅提高大模型的推理能力。但是,几个月过去了,这个当时吸引了大量讨论的项目没有任何信息。直到昨天,Reuters披露了Q\*项目的进展,这个项目已经变为Strawberry!并且距离发布时间更近了!

截止目前可能是全球最快的大语言模型推理服务:实机演示Groq公司每秒500个tokens输出的450亿参数的Mixtral 8×7B模型

大模型的推理速度是当前制约大模型应用的一个非常重要的问题。在很多的应用场景中(如复杂的接口调用、很多信息处理)的场景,更快的大模型响应速度通常意味着更好的体验。但是,在实际中我们可用的场景下,大多数大语言模型的推理速度都非常有限。慢的有每秒30个tokens,快的一般也不会超过每秒100个tokens。而最近,美国加州一家企业Groq推出了他们的大模型服务,可以达到每秒接近500个tokens的响应速度,非常震撼。

不同参数规模大语言模型在不同微调方法下所需要的显存总结

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

TensorRT-LLM:英伟达推出的专为提升大模型推理速度优化的全新框架

随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!

数学推理能力超过ChatGPT-3.5:微软与中科院研究人员合作最新的开源大模型WizardMath发布!开源模型第一,免费商用授权!

WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!

12倍推理速度提升!Meta AI开源全新的AI推理引擎AITemplate

为了提高AI模型的推理速度,降低在不同GPU硬件部署的成本,Meta AI研究人员在昨天发布了一个全新的AI推理引擎AITemplate(AIT),该引擎是一个Python框架,它在各种广泛使用的人工智能模型(如卷积神经网络、变换器和扩散器)上提供接近硬件原生的Tensor Core(英伟达GPU)和Matrix Core(AMD GPU)性能。