Effects of spatial ability and richness of motion cue on learning in mechanically complex domain

作者:

Highlights:

摘要

This study seeks to examine the impact of individual differences in the spatial ability of learners to integrate verbal information and three modes of visual representations. Several hypotheses were tested, including that (1) individual difference in spatial ability should influence the learning of theoretical knowledge when the instructional materials present a static visual representation at the lowest motion cue richness, and (2) both animations and the static visual representation containing motion cues should be more effective than static visual representation, especially for learners with low spatial ability. In the experiment, 60 learners were classified as having either low or high spatial ability on the basis of their performance on the Kit of Factor Referenced Cognitive Tests. The learners got knowledge from written explanations describing a four-stroke engine mechanism in a computer-based format. Also, written explanations were reinforced by corresponding visual representations with three levels of motion cue richness (static images, static images with motion cues or animations). Understanding was measured by a problem-solving transfer test. The results indicate that (1) presenting written explanations with corresponding animations did not improve performance of the learners with high spatial ability, (2) for the learners with low spatial ability, learning was enhanced by the use of animations, (3) merely adding motion cues to the static visual representation did not improve learning of the learners with low spatial ability, and (4) use of animations did not help learners with low spatial ability more than those with high spatial ability.

论文关键词:Spatial ability,Motion cue richness,Visualization,Animation,Visual representation,Computer-based instruction

论文评审过程:Available online 12 March 2011.

论文官网地址:https://doi.org/10.1016/j.chb.2011.02.005