An investigation of mountain method clustering for large data sets

作者:

Highlights:

摘要

The Mountain Method of clustering was introduced by Yager and Filev and refined for practical use by Chiu. The approach is based on density estimation in feature space with the highest peak extracted as a cluster center and a new density estimation created for extraction of the next cluster center. The process is repeated until a stopping condition is met. The Chiu version of this approach has been implemented in the Matlab Fuzzy Logic Tool☐. In this paper, we develop an alternate implementation that allows large data sets to be processed effectively. Methods to set the parameters required by the algorithm are also given. Magnetic resonance images of the human brain are used as a test domain. Comparisons with the Matlab implementation show that our new approach is considerably more practical in terms of the time required to cluster, as well as better at producing partitions of the data that correspond to those expected. Comparisons are also made to the fuzzy c-means clustering algorithm, which show that our improved mountain method is a viable competitor, producing excellent partitions of large data sets.

论文关键词:Clustering,MRI,Segmentation,Brain tumor,Histogram,Mode separation

论文评审过程:Received 3 May 1995, Revised 12 August 1996, Accepted 26 August 1996, Available online 7 June 2001.

论文官网地址:https://doi.org/10.1016/S0031-3203(96)00133-1