A classification of one-dimensional cellular automata using infinite computations
作者:
Highlights:
•
摘要
This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see Sergeyev (2003, 2009, 2013, 2008, 2008) [15–19]), to classify one-dimensional cellular automata whereby each class corresponds to a different and distinct dynamical behavior. The forward dynamics of a cellular automaton map are studied via defined classes. Using these classes, along with the Infinite Unit Axiom and grossone, the number of configurations that equal those of a given configuration, in some finite central window, under an automaton map can now be computed. Hence a classification scheme for one-dimensional cellular automata is developed, whereby determination in a particular class is dependent on the number of elements in their respective forward iteration classes.
论文关键词:Cellular automata,Infinite Unit Axiom,Grossone,Metric,Dynamical systems
论文评审过程:Available online 19 July 2014.
论文官网地址:https://doi.org/10.1016/j.amc.2014.06.087