Variance enhanced K-medoid clustering
作者:
Highlights:
•
摘要
This paper proposes new variance enhanced clustering methods to improve the popular K-medoid algorithm by adapting variance information in data clustering. Since measuring similarity between data objects is simpler than mapping data objects to data points in feature space, these pairwise similarity based clustering algorithms can greatly reduce the difficulty in developing clustering based pattern recognition applications. A web-based image clustering system has been developed to demonstrate and show the clustering power and significance of the proposed methods. Synthetic numerical data and real-world image collection are applied to evaluate the performance of the proposed methods on the prototype system. As shown as the web-demonstration, the proposed method, variance enhanced K-medoid model, groups similar images in clusters with various variances according to the distribution of image similarity values.
论文关键词:Clustering,K-medoid,Data variance,Polygon model,Image similarity
论文评审过程:Available online 20 July 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.07.030