Parallel Learning of Belief Networks in Large and Difficult Domains

作者:Y. Xiang, T. Chu

摘要

Learning belief networks from large domains can be expensive even with single-link lookahead search (SLLS). Since a SLLS cannot learn correctly in a class of problem domains, multi-link lookahead search (MLLS) is needed which further increases the computational complexity. In our experiment, learning in some difficult domains over more than a dozen variables took days. In this paper, we study how to use parallelism to speed up SLLS for learning in large domains and to tackle the increased complexity of MLLS for learning in difficult domains. We propose a natural decomposition of the learning task for parallel processing. We investigate two strategies for job allocation among processors to further improve load balancing and efficiency of the parallel system. For learning from very large datasets, we present a regrouping of the available processors such that slow data access through the file system can be replaced by fast memory access. Experimental results in a distributed memory MIMD computer demonstrate the effectiveness of the proposed algorithms.

论文关键词:belief networks, parallel implementation of data mining

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1009888910252