V-

V-MoE

基础大模型

Vision Mixture of Experts

发布时间: 2021-06-10

模型参数(Parameters)
150.0
最高上下文长度(Context Length)
2K
是否支持中文
不支持
推理能力(Reasoning)

模型基本信息

最高上下文输入长度

2K tokens

最长输出结果
未披露
模型类型

基础大模型

发布时间

2021-06-10

模型预文件大小
暂无数据

开源和体验地址

代码开源状态
预训练权重开源
-
GitHub 源码
暂无GitHub开源地址
Hugging Face
暂无开源HuggingFace地址
在线体验
暂无在线体验地址

官方介绍与博客

官方论文
DataLearnerAI博客
暂无介绍博客

API接口信息

接口速度
暂无数据
接口价格
输入价格:
  • 文本: 暂无数据
  • 图片: 暂无数据
  • 音频: 暂无数据
  • 视频: 暂无数据
  • Embedding: 暂无数据
输出价格:
  • 文本: 暂无数据
  • 图片: 暂无数据
  • 音频: 暂无数据
  • 视频: 暂无数据
  • Embedding: 暂无数据

输入支持的模态

文本

输入不支持

图片

输入不支持

视频

输入不支持

音频

输入不支持

Embedding(向量)

输入不支持

输出支持的模态

文本

输出不支持

图片

输出不支持

视频

输出不支持

音频

输出不支持

Embedding(向量)

输出不支持

V-MoE模型在各大评测榜单的评分

发布机构

模型介绍

视觉Transformers (ViT)已经成为视觉任务的最佳架构之一。ViT首先将图像分割成同等大小的方形斑块。这些被称为标记,是一个从语言模型继承下来的术语。然而,与最大的语言模型相比,ViT模型在参数数量和计算量上要小几个数量级。


为了大规模地扩展视觉模型,我们用独立的前馈层的稀疏混合物(我们称之为专家)取代了ViT架构中的一些密集前馈层(FFN)。一个可学习的路由器层为每个单独的标记选择哪些专家(以及他们的加权方式)。也就是说,来自同一图像的不同标记可能会被路由到不同的专家。每个标记最多只能被送到K(通常是1或2)个专家那里,总共有E个专家(在我们的实验中,E通常是32)。这使得模型的规模可以扩展,同时保持每个令牌的计算量大致不变。下图更详细地显示了编码器模块的结构。

关注DataLearnerAI公众号

关注DataLearnerAI微信公众号,接受最新大模型资讯

DataLearnerAI WeChat