TS

Tsinghua-ERNIE

Enhanced Language Representation with Informative Entities

发布时间: 2019-05-17439
模型参数
1.14亿
上下文长度
2K
中文支持
支持
推理能力

模型基本信息

推理过程
不支持
上下文长度
2K tokens
最大输出长度
暂无数据
模型类型
暂无数据
发布时间
2019-05-17
模型文件大小
0.218
推理模式
暂无模式数据

开源和体验地址

代码开源状态
预训练权重开源
MIT License- 免费商用授权
Hugging Face
暂无开源HuggingFace地址
在线体验
暂无在线体验地址

官方介绍与博客

DataLearnerAI博客
暂无介绍博客

API接口信息

接口速度
暂无数据
暂无公开的 API 定价信息。

评测得分

当前尚无可展示的评测数据。

发布机构

模型解读

神经语言表示模型,如在大规模语料库上预训练的BERT,可以很好地从纯文本中捕捉到丰富的语义模式,并进行微调以持续改进各种NLP任务的性能。然而,现有的预训练语言模型很少考虑将知识图谱(KG)纳入其中,KG可以提供丰富的结构化知识事实以实现更好的语言理解。我们认为,KG中的信息实体可以增强语言表示的外部知识。在本文中,我们利用大规模文本语料库和KG训练了一个增强语言表示模型(ERNIE),可以同时充分利用词汇、句法和知识信息。实验结果表明,ERNIE在各种知识驱动任务上取得了显著的改进,同时在其他常见NLP任务上与最先进的模型BERT相当。


预训练结果下载地址: https://cloud.tsinghua.edu.cn/f/a763616323f946fd8ff6/ 

DataLearner 官方微信

欢迎关注 DataLearner 官方微信,获得最新 AI 技术推送

DataLearner 官方微信二维码