模型全称
Generative Language Mode
发布组织
OpenAI
模型大小
类型
自然语言处理
发布论文
Improving Language Understanding by Generative Pre-Training
模型简介
自然语言理解包括一系列不同的任务,如文本相关性、问题回答、语义相似性评估和文档分类。虽然大量的无标签文本语料库很丰富,但用于学习这些特定任务的有标签的数据却很少,这使得经过判别训练的模型很难有充分的表现。我们证明,通过在不同的无标签文本语料库上对语言模型进行生成性预训练,然后在每个具体任务上进行鉴别性微调,可以在这些任务上取得巨大的收益。与以前的方法相比,我们在微调过程中利用了任务意识的输入转换来实现有效的转移,同时要求对模型结构进行最小的改变。我们在广泛的自然语言理解基准上证明了我们方法的有效性。我们的一般任务诊断模型优于使用专门为每个任务设计的架构的辨别性训练模型,在所研究的12个任务中,有9个任务的技术水平得到了显著提高。例如,我们在常识推理(Stories Cloze Test)方面取得了8.9%的绝对改进,在问题回答(RACE)方面取得了5.7%的绝对改进,在文本关联(MultiNLI)方面取得了1.5%的改进。