标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法
交叉熵(Cross-Entropy)损失函数是分类模型中的一种非常重要的目标函数。在二分类问题中,交叉熵损失函数的形式如下:
-[y\log p +(1-y)\log(1-p)]
如果分类准确,交叉熵损失函数的结果是0(即上式中p和y一致的情况),否则交叉熵为无穷大。也就是说交叉熵对分类正确给的是最大激励。换句话说,对于标注数据来说,这个时候我们认为其标注结果是准确的(不然这个结果就没意义了)。但实际上,有一些标注数据并不一定是准确的。那么这时候,使用交叉熵损失函数作为目标函数并不一定是最优的。
在早起的神经网络研究中,也有发现,一些非标准的交叉熵损失函数表现会更好一点。
对于这个问题,我们还可以这么去理解。在分类任务中,我们通常对类别标签的编码使用[0,1,2,...]这种形式。在深度学习中,通常在全连接层的最后一层,加入一个softmax来计算输入数据属于每个类别的概率,并把概率最高的作为这个类别的输入,然后使用交叉熵作为损失函数。这会导致模型对正确分类的情况奖励最大,错误分类惩罚最大。如果训练数据能覆盖所有情况,或者是完全正确,那么这种方式没有问题。但事实上,这不可能。所以这种方式可能会带来泛化能力差的问题,即过拟合。
在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,用以减轻这个问题。
