用python绘制散点图

如何使用python绘制简单的散点图

夏天的风 2803 2019/03/27 21:13:00 Python/散点图
深度学习之GRU神经网络

之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:

小木 3426 2019/03/23 15:34:28 GRU/RNN/深度学习
深度学习之LSTM模型

在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。

小木 2854 2019/03/23 15:34:00 LSTM/RNN/深度学习
8个非常好的NLP领域的预训练模型(包含代码和论文资源)

使用预训练模型处理NLP任务是目前深度学习中一个非常火热的领域。本文总结了8个顶级的预训练模型,并提供了每个模型相关的资源(包括官方文档、Github代码和别人已经基于这些模型预训练好的模型等)。

小木 4538 2019/03/23 12:27:49 NLP/PretrainedModel/深度学习/预训练
深度学习之Attention机制

Encoder-Decoder的深度学习架构是目前非常流行的神经网络架构,在许多的任务上都取得了很好的成绩。在之前的博客中,我们也详细介绍了该架构(参见深度学习之Encoder-Decoder架构)。本篇博客将详细讲述Attention机制。

小木 2468 2019/03/21 11:32:02 Attention/RNN/深度学习
深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

小木 5002 2019/03/19 11:19:04 Encoder-Decoder/RNN/Seq2Seq/深度学习
深度学习之RNN模型

序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。

小木 5817 2019/03/15 10:57:12 RNN/深度学习
Python中的Pickle操作(pkl文件解释)

您刚刚经历了一个耗时的过程,将一堆数据加载到python对象中。 也许你从数千个网站上爬取了数据。也许你计算了pi的数值。如果您的笔记本电脑电池耗尽或python崩溃,您的信息将丢失。 Pickling允许您将python对象保存为硬盘驱动器上的二进制文件。 在你pickle你的对象后,你可以结束你的python会话,重新启动你的计算机,然后再次将你的对象加载到python中。

小木 8325 2019/03/11 16:43:55 python/序列化
在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)

广告分配问题属于运筹中的优化问题。一般情况下,我们期望有个最大化收益,但同时需要保证合约的完成。因此,这是一个带不等式约束的最优化问题。由于广告数量和用户数量很多,因此,求解的难度很高。在这篇文章中,作者推导了原问题的拉格朗日函数的系数之间的关系,大大降低了求解的难度。这里将简要介绍原理和推导过程。

小木 1471 2019/02/28 15:59:05 在线广告/展示广告/广告分配
对偶规划问题

对偶问题(Dual Problem)是运筹学中一个很重要的概念,是基于原问题的约束条件和目标函数为基础构造而来。每一个线性规划的问题都存在一个与之对应的对偶问题。对偶问题在求解最优化问题时很有用。

小木 2354 2019/02/28 15:02:59 广告分配/线性规划/运筹
最优化问题的KKT条件简要解释

KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。

小木 4073 2019/02/28 15:02:36 KKT条件/拉格朗日算子/线性规划/运筹学/非线性规划
深度学习的标准符号表示

深度学习中的符号很多,但是大多数情况下,大家都使用同一套符号来表示。这篇博客主要以一个简单的神经网络为例,说明深度学习的标准符号以及相关的维度表示。主要来源是吴恩达的coursera课程。

小木 2108 2019/02/21 20:16:40 深度学习
深度学习技巧之Padding

卷积神经网络是深度学习中处理图像的利器。在卷积神经网络中,Padding是一种非常常见的操作。本片博客将简要介绍Padding的原理。

小木 2079 2019/02/20 15:22:48 卷积神经网络/深度学习/神经网络