大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Cohere For AI 推出了 Aya Vision 系列,这是一组包含 80 亿(8B)和 320 亿(32B)参数的视觉语言模型(VLMs)。这些模型针对多模态AI系统中的多语言性能挑战,支持23种语言。Aya Vision 基于 Aya Expanse 语言模型,并通过引入视觉语言理解扩展了其能力。该系列模型旨在提升同时需要文本和图像理解的任务性能。
2025年2月25日,Anthropic发布了Claude 3.7 Sonnet大模型,该模型是业界第一个同时支持标准输出和深度推理模式的单一大模型,各项评测相比较Claude Sonnet 3.5大幅提升。特别是代码能力进一步增强。
短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。
今天马斯克旗下的xAI公司发布了最新一代大语言模型Grok3,基于20万张GPU集群训练,各方面的提升都非常明显。在主流评测上都超过了现有的大模型。
最近,一些未公开但即将发布的内容被曝出,显示出Anthropic正在为其AI模型(Claude)推出一项名为Thinking的新功能。这一功能将极大提升AI在推理和决策时的透明度,允许用户查看AI的思考过程,并提供更长时间的推理分析,帮助用户更好地理解和验证AI的决策逻辑。
随着DeepSeek R1和OpenAI的o1、o3等推理大模型的发布,我们当前可使用的大模型种类也变多了。但是,推理大模型和普通大模型之间并不是二选一的关系,在不同的问题上二者各有优势。为了让大家更清晰理解推理大模型和普通大模型的应用场景。OpenAI官方推出了一个推理大模型最佳实践指南。描述了二者的对比。本文将总结这份推理大模型最佳实践指南。
最近,随着DeepSeek R1的火爆,推理大模型也进入大众的视野。但是,相比较此前的GPT-4o,推理大模型的区别是什么?它适合什么样的任务?推理大模型是如何训练出来的?很多人并不了解。本文将详细解释推理大模型的核心内容。
2025年2月5日,Google官方宣布Gemini 2.0 Pro版本上线,Gemini系列是谷歌最新一代大模型的品牌名称。Google最早在2024年12月中旬发布了Gemini 2.0系列的第一个模型Gemini 2.0 Flash,当时试用的人都普遍反应这个模型速度又快,结果友好,让Google摆脱了此前大模型很落后的印象。今天,Gemini 2.0 Pro上线,其能力更强。
大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P
DeepSeekAI最近发布的几个模型,如DeepSeek V3、DeepSeek R1等引起了全球的广泛关注和讨论,特别是低成本训练出高质量模型之后,引起了很多的争论。引起了大家对OpenAI、英伟达等公司未来的质疑。然而,对于DeepSeekAI的模型为什么引起了如此广泛的关注,以及大家讨论的核心内容是什么,很多人并不是很清楚。本文基于著名的独立科技行业分析师Ben Thompson的总结,配合DataLearnerAI的分析,为大家总结DeepSeek引起的全球讨论。
评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。
在大模型的应用中,处理复杂请求往往伴随着较高的延迟和成本,尤其是当请求内容存在大量重复部分时。这种“慢请求”的问题,特别是在长提示和高频交互的场景中,显得尤为突出。为了应对这一挑战,OpenAI 最近推出了 **提示缓存(Prompt Caching)** 功能。这项新技术通过缓存模型处理过的相同前缀部分,避免了重复计算,从而大幅减少了请求的响应时间和相关成本。特别是对于包含静态内容的长提示请求,提示缓存能够显著提高效率,降低运行开销。本文将详细介绍这项功能的工作原理、支持的模型,以及如何通过合理的提示结
Llama系列大语言模型一直是开源领域的大模型标杆,Llama3系列大模型自从开源之后一直在不断更新。最早的Llama3模型于2024年4月开源,此后,几乎每个三个月都有一个新版本发布。就在昨天,Meta开源了最新的Llama3.3-70B模型,这是Llama3.3系列目前唯一开源的模型。尽管该模型的参数规模仅仅700亿,但是在多项评测基准上已经超过了4050亿参数规模的Llama3.1-405B,后者是Llama系列模型中参数规模最大的一个,也是业界开源模型中参数规模最高的模型之一。
几个小时前,OpenAI开启了今年密集的产品发布时间,本次发布会持续12天,直播12天。几个小时前,第一个发布的产品宣布,那就是OpenAI o1模型的正式版。同时也开启了一个全新的ChatGPT付费计划,即ChatGPT Pro,每个月200美元,可以不限量使用所有模型。本文详细介绍OpenAI o1模型。
OpenAI的o1模型被认为是大模型领域中推理能力最强的代表之一,由于其强大的数学逻辑推理能力,被认为是大模型未来的进化方向。而就在2个月之后的11月快结束的时间里,幻方量化旗下人工智能企业DeepSeekAI发布了全新的DeepSeek-R1-Lite-Preview模型,号称是o1模型的有力挑战者。该模型利用了类似的o1的思维链思索过程,推理能力大幅增强。DataLearnerAI将在本文中对该模型进行介绍,并进行几个简单的对比结果测试。结果证明这个模型是非常优秀的!
Google Gemini Pro多模态接口开放!DataLearnerAI第一时间测试Gemini Pro多模态能力,比想象惊喜!
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法
如何解决大模型微调过程中的知识遗忘?香港大学提出有监督微调新范式并开源新模型LLaMA Pro
数学推理能力超过ChatGPT-3.5:微软与中科院研究人员合作最新的开源大模型WizardMath发布!开源模型第一,免费商用授权!
最新好课!从深度学习到stable diffusion的手把手入门教程
GPT-4在11月份以来变懒的原因可能已经找到:大模型可能会在节假日期间变得不愿意干活,工作日期间却更加高效