大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
RNN的应用有很多,尤其是两个RNN组成的Seq2Seq结构,在时序预测、自然语言处理等方面有很大的用处,而每个RNN中一个节点是一个Cell,它是RNN中的基本结构。本文从如何使用RNN建模数据开始,重点解释RNN中Cell的结构,以及Keras中Cell相关的输入输出及其维度。我已经尽量解释了每个变量,但可能也有忽略,因此可能对RNN之前有一定了解的人会更友好,本文最主要的目的是描述Keras中RNNcell的参数以及输入输出的两个注意点。如有问题也欢迎指出,我会进行修改。
深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。
平衡二叉树之AVL树(Adelson-Velsky and Landis Tree)简介及Java实现
OpenAI最新的文本生成图像大模型DALL·E3发布!生成的图像不忽略每一个细节的文本!
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用
pandas.DataFrame.to_csv和dask.dataframe.to_csv在windows下保存csv文件出现多个换行结果
如何基于Gradio构建生成式AI的应用:吴恩达联合HuggingFace推出最新1小时短课
大模型企业宫斗连续剧:刚刚发生!StabilityAI重要技术人员出走后CEO辞职!HuggingFace CEO说考虑收购StabilityAI