大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
2024年,美国数学邀请赛(AIME)成为评估大型语言模型(LLM)数学推理能力的重要基准。AIME是一项备受尊崇的考试,包含15道题,考试时间为3小时,旨在考察美国顶尖高中生在各类数学领域的复杂问题解决能力。
在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。
在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
重磅!OpenAI发布最强推理模型“OpenAI o1”(代号草莓),大模型逻辑推理能力大幅提升,官方宣称超越部分人类博士水平!
MistralAI发布了Mixtral 8×7B MoE模型的论文,更详细的参数和对比结果~
重磅!MetaAI开源4050亿参数的大语言模型Llama3.1-405B模型!多项评测结果超越GPT-4o,与Claude-3.5 Sonnet平分秋色!
AutoGPT是如何让GPT-4自动帮你完成任务的——最火的AutoGPT原理解析!
Falcon-40B:截止目前最强大的开源大语言模型,超越MetaAI的LLaMA-65B的开源大语言模型
Grok3发布!马斯克旗下大模型企业xAI发布Grok3、Grok3-mini,支持Deep Research、语音交互和“思考”模式的推理大模型,推理模式评测结果全球最强