大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
2024年,美国数学邀请赛(AIME)成为评估大型语言模型(LLM)数学推理能力的重要基准。AIME是一项备受尊崇的考试,包含15道题,考试时间为3小时,旨在考察美国顶尖高中生在各类数学领域的复杂问题解决能力。
在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。
在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
如何训练一个大语言模型?当前基于transformer架构的大语言模型的通用训练流程介绍
OpenAI首次发布语音合成大模型:VoiceEngine,一个可以用15秒原始录音就可以克隆声音的语音合成大模型
层次狄利克雷过程简介(Hierarchical Dirichlet Process, HDP)
HuggingFace宣布在transformers库中引入首个RNN模型:RWKV,一个结合了RNN与Transformer双重优点的模型
AI2发布全新的大语言模型预训练数据集:包含3万亿tokens的大规模文本数据集AI2 Dolma,开源免费商用数据集~
重磅!MetaAI开源4050亿参数的大语言模型Llama3.1-405B模型!多项评测结果超越GPT-4o,与Claude-3.5 Sonnet平分秋色!
微软开源最强38亿小规模参数大语言模型以及56亿参数规模全模态大模型,但是总体评测结果超过Qwen2.5-7B以及Llama3.1-8B等模型,接近GPT-4o mini。