大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
多项式分布是非常常见的分布,他是二项分布在多维上的推广。例如掷骰子结果中,1-6点出现的次数就是一个多项式分布。多项式分布在如主题建模中非常常见,本文将讲述多项式分布的贝叶斯推导过程。
高斯混合模型是一个参数概率密度函数,它是一组高斯密度函数的加权求和。在生物统计领域,高斯混合模型通常是连续测度或者特征的概率分布的参数模型。高斯混合模型可以使用迭代的EM算法或者最大后验概率法估计参数。
贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。
变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术。它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(parameters)和潜变量(latent variables)。
Wishart分布在多元高斯的贝叶斯推断中非常重要。它通常作为正态分布的协方差矩阵的逆矩阵的共轭先验存在。这篇博客将详细讲述Wishart分布及其作用。
多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导
高斯分布是最常见的分布,也是数据挖掘和人工智能中相关统计学习方法所涉及到的最重要的分布之一。使用贝叶斯理论进行统计推断是目前最流行的推断方式。
抽取样本方差的分布可以帮助我们生成很多其他分布的样本,例如生成一元高斯分布的样本就是可以通过方差分布来产生。这篇博客将描述如何抽取样本方差的分布。
在统计学中,矩母函数是一个关于随机变量的实值函数,它可以替代密度函数来描述分布。也就是说,出了概率密度函数外,我们也可以通过矩母函数来描述分布。
Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。
狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活
OpenAI发布2周后有哪些GPTs受欢迎?访问量如何?GPTs两周数据分析
OpenAI发布企业使用的ChatGPT:没有限制且更快的GPT-4、数据隔离、基于GPT-4的高级数据分析功能,但是暂不支持私有化部署
Google发布Gemini 2.5 Pro: Gemini系列第一个2.5版本的模型,最高支持200万上下文,全模态输入,推理大模型,LMArena排名第一
当前业界最优秀的8个编程大模型简介:从最早的DeepMind的AlphaCode到最新的StarCoder全解析~
Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)