大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Salesforce的研究人员开发了LAVIS(LAnguage-VISION的缩写),这是一个开源的库,用于在丰富的常见任务和数据集系列上训练和评估最先进的语言-视觉模型,并用于在定制的语言-视觉数据上进行现成的推理。
计算机视觉与自然语言处理是近几年人工智能领域进步最快以及应用最为成熟的两个方向。计算机视觉里面任务涉及面广,有很多细分领域,本文将对计算机视觉领域中比较常见的六种任务进行总结并同时展示以下相关任务的一些成绩。
这是一篇来自Sayak Paul的预测,这个哥们长期混迹于各个开源社区,积极参与各大公司的开发者大会。目前在一家初创企业工作,简历非常丰富,非常积极在社区推广自己。但是不管怎么说,他在计算机视觉领域也是一直在一线工作。他对未来计算机视觉的发展方向有五个预测,虽然不一定准确,但是我们可以借助这个进行思考。
OpenAI是一家什么样的企业——OpenAI介绍与成果总结
Llama3相比较前两代的模型(Llama1和Llama2)有哪些升级?几张图简单总结Llama3的训练成本、训练时间、模型架构升级等情况
OpenAI即将推出DALL·E Controls功能,可以更加精细化控制DALL·E图片生成的效果
聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论
好消息~Kaggle提高了免费的GPU和内存等计算资源的使用额度!
Batch Normalization应该在激活函数之前使用还是激活函数之后使用?