大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。
大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P
Meta开源Llama3.3-70B-Instruct模型:大模型后训练的佳作,性能超越4050亿参数规模的Llama3.1-405B大模型!
卷到家了!发布2天后MetaAI的Text-to-Video模型MAKE-A-VIDEO的开源PyTorch实现就要来了!
微软开源DeepSpeed Chat——一个端到端的RLHF的pipeline,可以用来训练类ChatGPT模型。
清华大学ChatGLM团队发布AI Agent能力评测工具AgentBench:GPT-4一骑绝尘,chatglm2表现优秀,baichuan-7b排名倒数!
阿里巴巴开源第二代大语言模型Qwen2系列,最高参数规模700亿,评测结果位列开源模型第一,超过了Meta开源的Llama3-70B!