TensorFlow中常见的错误解释及解决方法

TensorFlow中常见的错误解释及解决方法

小木 6276 keras/tensorflow
Java中自增操作i++与++i的区别

在Java中,自增是一种非常常见的操作,在自增中,有两种写法,一种是前缀自增(++i),一种是后缀自增(i++)。这里主要简单介绍两种自增的差别。

小木 1496 java/编程
softmax作为输出层激活函数的反向传播推导

softmax作为多标签分类中最常用的激活函数,常常作为最后一层存在,并经常和交叉熵损失函数一起搭配使用。这里描述如何推导交叉熵损失函数的推导问题。

小木 2762 python/人工智能/深度学习
深度学习技巧之Batch Normalization

Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。

小木 3128 coursera/深度学习/调优
Java类型转换中valueOf方法和parseInt方法的区别

在Java的类型转换中,我们经常会使用valueOf或者parseInt(parseFloat/parseDouble等)来转换。这二者有什么区别呢?这里简要介绍一下。

小木 2591 Java/编程
发现新大陆!(申请领地)

这是一个新大陆,有博客园,算法区,技术堡,论文馆,数据林,工具库。尽情畅游吧!

云客 1303 myself/newmainland/start
数据预处理中的高频词与低频词

在自然语言数据预处理阶段,为了提取更有用的信息,对数据必须进行相应处理。本文重点介绍对于高频词与低频词的处理。

小木 2536 文本处理
时间序列数据处理中的相关数学概念

时间序列数据分析的基础包含大量的统计知识。这篇博客主要用通俗的语言描述时间序列数据中涉及到的一些基本统计知识。

小木 1970 时间序列数据/统计
基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

小木 8992 GPU/机器学习/深度学习
XLNet基本思想简介以及为什么它优于BERT

前几天刚刚发布的XLNet彻底火了,原因是它在20多项任务中超越了BERT。这是一个非常让人惊讶的结果。之前我们也说过,在斯坦福问答系统中,XLNet也取得了目前单模型第一的成绩(总排名第四,前三个模型都是集成模型)。

小木 4475 深度学习
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,可以提高模型效果。

小木 8955 深度学习
使用卷积神经网络进行手写识别

本文是发在Medium上的一篇博客:《Handwritten Equation Solver using Convolutional Neural Network》。本文是原文的翻译。这篇文章主要教大家如何使用keras训练手写字符的识别,并保存训练好的模型到本地,以及未来如何调用保存到模型来预测。

小木 1956 卷积神经网络/深度学习
Tensorflow中数据集的使用方法(tf.data.Dataset)

Tensorflow中tf.data.Dataset是最常用的数据集类,我们也使用这个类做转换数据、迭代数据等操作。本篇博客将简要描述这个类的使用方法。

小木 10909 python/tensorflow/编程
CNN中的一些高级技术(空洞卷积/显著图/反卷积)

卷积神经网络是图像识别领域最重要的深度学习技术。也可以说是是本轮深度学习浪潮开始点。本文总结了CNN的三种高级技巧,分别是空洞卷积、显著图和反卷积技术。

小木 4569 卷积神经网络/深度学习
一文看懂如何初始化神经网络

深度学习的初始化非常重要,这篇博客主要描述两种初始化方法:一个是Kaiming初始化,一个是LSUV方法。文中对比了不同初始化的效果,并将每一种初始化得到的激活函数的输出都展示出来以查看每种初始化对层的输出的影响。当然,作者最后也发现如果使用了BatchNorm的话,不同的初始化方法结果差不多。说明使用BN可以使得初始化不那么敏感了。

小木 3022 深度学习/神经网络
提炼BERT——将BERT转成小模型(Distilling BERT — How to achieve BERT performance using Logistic Regression)

BERT是很好的模型,但是它的参数太大,网络结构太复杂。在很多没有GPU的环境下都无法部署。本文讲的是如何利用BERT构造更好的小的逻辑回归模型来代替原始BERT模型,可以放入生产环境中,以节约资源。

小木 2484 BERT/深度学习
CNN经典算法AlexNet介绍

2012年发表的AlexNet可以算是开启本轮深度学习浪潮的开山之作了。由于AlexNet在ImageNet LSVRC-2012(Large Scale Visual Recognition Competition)赢得第一名,并且错误率只有15.3%(第二名是26.2%),引起了巨大的反响。相比较之前的深度学习网络结构,AlexNet主要的变化在于激活函数采用了Relu、使用Dropout代替正则降低过拟合等。本篇博客将根据其论文,详细讲述AlexNet的网络结构及其特点。

小木 4911 卷积神经网络/深度学习
AdaBoost算法详解以及代码实现

AdaBoost,全称是“Adaptive Boosting”,由Freund和Schapire在1995年首次提出,并在1996发布了一篇新的论文证明其在实际数据集中的效果。这篇博客主要解释AdaBoost的算法详情以及实现。它可以理解为是首个“boosting”方式的集成算法。是一个关注二分类的集成算法。

小木 7522 adaboost/集成学习
深度学习的反向传播手动推导

反向传播算法是深度学习求解最重要的方法。这里我们手动推导一下。

小木 2228 反向传播/梯度下降/深度学习
深度学习的经典算法的论文、解读和代码实现

深度学习是目前最火的算法领域。他在诸多任务中取得的骄人成绩使得其进化越来越好。本文收集深度学习中的经典算法,以及相关的解释和代码实现。

小木 8355 深度学习
深度学习卷积操作的维度计算(PyTorch/Tensorflow等框架中Conv1d、Conv2d和Conv3d介绍)

卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。

小木 12736 PyTorch/卷积神经网络/深度学习
CNN经典算法之Inception V1(GoogLeNet)

GoogLeNet是谷歌在2014年提出的一种CNN深度学习方法,它赢得了2014年ILSVRC的冠军,其错误率要低于当时的VGGNet。与之前的深度学习网络思路不同,之前的CNN网络的主要目标还是加深网络的深度,而GoogLeNet则提出了一种新的结构,称之为inception。GoogLeNet利用inception结构组成了一个22层的巨大的网络,但是其参数却比之前的如AlexNet网络低很多。是一种非常优秀的CNN结构。

小木 2407 GoogLeNet/Inception/卷积神经网络/深度学习
CNN经典算法VGGNet介绍

VGGNet(Visual Geometry Group)是2014年又一个经典的卷积神经网络。VGGNet最主要的目标是试图回答“如何设计网络结构”的问题。随着AlexNet提出,很多人开始利用卷积神经网络来解决图像识别的问题。一般的做法都是重复几层卷积网络,每个卷积网络之后接一些池化层,最后再加上几个全连接层。而VGGNet的提出,给这些结构设计带来了一些标准参考。

小木 3938 卷积神经网络/深度学习
CNN入门算法LeNet-5介绍(论文详细解读)

1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。

小木 7096 卷积神经网络/深度学习
Keras框架下输出模型中间层学习到的表示的两种常用方式

深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。

夏天的风 1846 Keras/中间层表示