大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
4月26日,亚马逊联合其它高校科研人员发表了一篇关于如何使用ChatGPT完成下游论文。里面使用了一个非常直观明了的大语言模型进化图总结了目前当前大语言模型的技术架构分类和开源现状,十分受欢迎。因此,4月30日,作者再次更新这幅图,增加了更多的大语言模型。
BAAI全称北京智源人工智能研究院(Beijing Academy of Artificial Intelligence),是国内非常重要的一个人工智能研究机构。此前发布了悟道系列数据集和大模型。在最近,他们开源了一个全新的国产开源大语言模型Aquila系列模型。该模型基于大量的中英文数据集训练,是一个完全开源可商用国产大语言模型。
大语言模型训练的一个重要前提就是高质量超大规模的数据集。为了促进开源大模型生态的发展,Cerebras新发布了一个超大规模的文本数据集SlimPajama,SlimPajama可以作为大语言模型的训练数据集,具有很高的质量。除了SlimPajama数据集外,Cerebras此次还开源了处理原始数据的脚本,包括去重和预处理部分。官方认为,这是目前第一个开源处理万亿规模数据集的清理和MinHashLSH去重工具。
大模型微调依然是针对大量私有数据或者特定领域不可缺少的方法。就在前不久,LightningAI发布了一个轻量级大模型微调库Lit-Parrot,仅需一行代码即可微调当前开源大模型。
RedPajama模型是TOGETHER发布的一个开源可商用的大模型。2023年6月6日,TOGETHER在官方宣布该模型完成训练,经过测试,该模型目前超过所有7B规模的大模型,比LLaMA-7B和Falcon-7B的效果还要好!
前段时间,OpenAI的CEO Sam Altman与二十多位开发者一起聊了很多关于OpenAI的API和产品的规划问题。Sam Altman透露了一些非常重要的OpenAI的发展方向,包括GPT产品功能的未来规划等。目前这份原始博客内容已经应OpenAI的要求被删除,这里我们简单总结一下这些内容。
今天,吴恩达在推特上宣布和OpenAI、LangChain以及Lamini三家公司共同推出了3门短视频课程,分别是《使用ChatGPT API构建系统》、《基于LangChain的大语言模型应用与开发》和《Diffusion模型是如何工作的》。三门课程都是1个小时的短视频课程,而且配有详细的Jupyter Notebook使用方法。
在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。
5月27日,OpenBMB发布了一个最高有100亿参数规模的开源大语言模型CPM-BEE,OpenBMB是清华大学NLP实验室联合智源研究院成立的一个开源组织。该模型针对高质量中文数据集做了训练优化,支持中英文。根据官方的测试结果,其英文测试水平约等于LLaMA-13B,中文评测结果优秀。
epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?
今天,一位年仅20岁的小哥willdepue 开源了230万arXiv论文的标题和摘要的embedding向量数据集,完全开源。该数据集包含截止2023年5月4日的所有arXiv上的论文标题和摘要的embedding结果,使用的是开源的Instructor XL抽取。未来将开放更多其它相关数据的embedding结果
昨天,HuggingFace的大语言模型排行榜上突然出现了一个评分超过LLaMA-65B的大语言模型:Falcon-40B,引起了广泛的关注。本文将简要的介绍一下这个模型。截止2023年5月27日,Falcon-40B模型(400亿参数)在推理、理解等4项Open LLM Leaderloard任务上评价得分第一,超过了之前最强大的LLaMA-65B模型。
前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!
虽然LLM在很多任务上很好用,但是实际应用中我们常见的文本分类、文本标注等工作目前却依然缺少一个可以利用LLM能力的好方法。LLM的强大并没有在工程落地上比肩传统的机器学习处理框架。上周,一个叫Scikit-LLM新的开源项目发布,将传统优秀的Scikit-learn框架与LLM结合,带来了LLM落地的新方法。
今天,Meta的首席AI科学家Yann LeCun在推特上宣布了MetaAI的最新研究成果:MMS,一个支持1107种语言的自动语音识别模型和语音合成模型,该模型自动语音识别的单词错误率只有OpenAI开源的Whisper的一半!但是支持的语言却有1107种,是Whisper的11倍!代码与预训练结果已开源,不过不可以商用哦~
pandas.DataFrame.to_csv和dask.dataframe.to_csv在windows下保存csv文件出现多个换行结果
帮助你提升知识和技能的17个数据科学项目(都是可以免费获取的)
Gamma函数(伽玛函数)的一阶导数、二阶导数公式推导及java程序
AI2发布全新的大语言模型预训练数据集:包含3万亿tokens的大规模文本数据集AI2 Dolma,开源免费商用数据集~
重磅!谷歌宣布发布Gemini 1.5 Pro,距离Gemini发布仅仅一个半月!最高支持1000万上下文长度,GSM8K评测全球第一
Linux环境下使用NLPIR(ICTCLAS)中文分词详解
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!
MistralAI开源全球首个(可能)基于MoE(Mixture of Experts)技术的大模型:预训练下载链接全球直发,但实测表现似乎一般!