大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
《Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter》是由Wes McKinney撰写的Python数据分析专业工具书籍。很容易理解,这本书就是教大家如何使用Pandas、NumPy以及Jupyter分析数据的。
开源软件在现代互联网技术的发展中扮演者重要的作用。很多技术的进步和发展都是由开源软件推动的。而开源软件的发展离不开背后强大的开源组织的管理。本文列举最著名的五个开源组织,简述其背景,欢迎大家阅读。
大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。
最近一段时间,很多人普遍反映GPT-4变得懒散和愚笨,很多此前可以回答的问题在最近一段时间都无法回答,或者回答比较简单。为此,OpenAI官方也在前几天发布信息说的确收到了这样的信息,但是模型并没有在最近一个多月更新过,所以他们也在好奇是什么原因。而今天的一些测试表明,GPT-4模型会像人一样在不同的时间段有不同的效率。
随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!
苹果刚刚发布了一个全新的机器学习矿机MLX,这是一个类似NumPy数组的框架,目的是可以在苹果的芯片上更加高效地运行各种机器学习模型,当然最主要的目的是大模型。
Awesome ChatGPT Prompts是由JavaScript开发者Fatih Kadir Akın创建的一个网站和应用,里面收集了160多个关于ChatGPT的Prompt模板,可以让ChatGPT变成Linux终端、JavaScript控制台、Excel页面等。这些Prompts收集自优秀的实践案例。
AI模型的发展速度令人惊讶,几乎每天都会有新的模型发布。而2023年4月中旬也有很多新的模型发布,我们挑出几个重点给大家介绍一下。
RWKV是一个结合了RNN与Transformer双重优点的模型架构。由香港大学物理系毕业的彭博首次提出。简单来说,RWKV是一个RNN架构的模型,但是可以像transformer一样高效训练。今天,HuggingFace官方宣布在transformers库中首次引入RNN这样的模型,足见RWKV模型的价值。
前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!
在做LeetCode题目的时候,有一类题目是关于大数运算的。比如,全排列计算或者组合运算,在使用C语言或者Java代码解决这类问题的时候都会遇到变量数值超过阈值的情况。一般来说需要自己构造字符串数组或者是其它数组来存储超过长度的数值。但是,使用Python语言处理这类问题时候却毫无压力,这类题目的计算不会有任何问题。本文将从Python底层实现解释这个问题。