DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:模型压缩
标签

「模型压缩」相关文章

汇总「模型压缩」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#模型压缩
CerebrasAI开源可以在iPhone上运行的30亿参数大模型:BTLM-3B-8K,免费可商用,支持最高8K上下文输入,仅需3GB显存

CerebrasAI开源可以在iPhone上运行的30亿参数大模型:BTLM-3B-8K,免费可商用,支持最高8K上下文输入,仅需3GB显存

大模型的进展非常快,但是如何在移动端部署和使用依然是一个非常大的挑战。今天,CerebrasAI联合Opentensor一起开源了一个30亿参数规模的模型BTLM-3B-8K,官方宣称其性能接近70亿参数规模的大模型,但是运行的资源却很低,最低量化版本只需要不到4GB显存即可。

2023/07/25 17:10:341,120
#BTLM-3B-8K#大模型压缩#移动大模型
Llama2模型量化结果地址

Llama2模型量化结果地址

2023/07/19 21:21:501,338
#LLaMA2#模型压缩#量化模型
如何基于PyTorch来优化大模型训练的内存(显存)使用:8种方法总结

如何基于PyTorch来优化大模型训练的内存(显存)使用:8种方法总结

大模型虽然效果很好,但是对资源的消耗却非常高。更麻烦的其实不是训练过程慢,而是峰值内存(显存)的消耗直接决定了我们的硬件是否可以来针对大模型进行训练。最近LightningAI官方总结了使用Fabric降低大模型训练内存的方法。但是,它也适用于其它场景。因此,本文总结一下相关的方法。

2023/07/04 22:24:113,979
#大模型微调#模型压缩
华盛顿大学提出QLoRA及开源预训练模型Guanaco:将650亿参数规模的大模型微调的显存需求从780G降低到48G!单张显卡可用!

华盛顿大学提出QLoRA及开源预训练模型Guanaco:将650亿参数规模的大模型微调的显存需求从780G降低到48G!单张显卡可用!

前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!

2023/05/25 23:52:472,519
#fine-tuning#LoRA#QLoRA

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试MySQL调优之SQL语句优化可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数LDA的Gibbs抽样详细推理与理解GPT4All发布可以在CPU+Windows的消费级硬件上生成embeddings向量的模型:低成本、高质量、易上手的embedding生成新选择总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解Java类型转换中valueOf方法和parseInt方法的区别开源界最新力作!230万篇arXiv的论文标题和摘要的所有embeddings向量数据集免费开放!122

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介