DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:正则化
标签

「正则化」相关文章

汇总「正则化」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#正则化
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

2023/05/31 00:33:363,512
#tokens#大语言模型
正则项的理解之正则从哪里来

正则项的理解之正则从哪里来

在机器学习或者深度学习中,正则项是我们经常遇到的概念。它对提高模型的准确性和泛化能力非常重要。本文详细描述了正则项的来源以及与其他概念的相关关系。

2017/11/06 17:02:1914,277
#人工智能#机器学习
机器学习之正则化项

机器学习之正则化项

在我们给推荐问题建模时,神秘的正则化项L0、L1、L2的选择对模型很重要。为什么要加正则化?正则化有哪几种形式?到底该选择哪种正则化来建模呢?正则化项与推荐问题的关系?

2017/03/09 14:21:076,003
#L0#L1

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 学术工具
  • 重磅!苹果官方发布大模型框架:一个可以充分利用苹果统一内存的新的大模型框架MLX,你的MacBook可以一键运行LLaMA了
  • 阿里开源2个全新多模态理解大模型Qwen3-VL-4B和8B:主流评测结果超Gemini 2.5 Flash Lite、GPT-5 Nano,面向多模态Agent和机器人应用打造
  • OpenAI发布ChatGPT Agent系统:一个新模型驱动的系统,可以写代码运行代码,使用浏览器订票,写PPT、做excel的全能Agent
  • OpenAI发布2周后有哪些GPTs受欢迎?访问量如何?GPTs两周数据分析
  • Ai2发布全新评测基准SciArena:为科学文献任务而生的大模型评测新基准,o3大幅领先所有大模型
  • 在消费级显卡上微调OpenAI开源的自动语言识别模型Whisper:8GB显存即可针对你自己的数据建立ASR模型
  • OpenAI发布Frontier:一个企业级的Agent构建平台,把 AI 变成企业里的“数字同事”,那么OpenAI Frontier能做什么?