大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
文中整理和总结了几个关于开源大模型微调方面的问题,答案主要来自gpt4 + google,如果其中部分问题的答案不准确,烦劳指正 (文中引用了外部资源链接,如果涉及版权问题,烦劳联系作者删除)
前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!
德国的一位博士生开源了一个使用LoRA(Low Rank Adaptation)技术和PEFT(Parameter Efficient Fine Tuning)方法对Whisper模型进行高效微调的项目。可以让大家在消费级显卡(显存8GB)上对OpenAI开源的WhisperV2模型进行微调!
ChatGPT官方代码解释器插件Code-Interpreter大揭秘:Code-Interpreter背后都有什么(执行环境、硬件资源、包含的Python库等)?
加州大学欧文分校信息技术办公室开放基于GPT-4.5的ZotGPT服务测试
二叉查找树(Binary Search Trees,BST)数据结构详解
重磅!Scikit-learn与Hugging Face强强联手了!
大规模中文开源数据集发布!2TB、几十亿条可商用的中文数据集书生·万卷 1.0开源~中文大模型能力可能要更上一层楼了!
GPT-5可能是什么样?网友总结了Sam在达沃斯论坛中的几场演讲,抽取了Sam演讲中包含的GPT-5相关的内容