大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
在机器学习或者深度学习中,正则项是我们经常遇到的概念。它对提高模型的准确性和泛化能力非常重要。本文详细描述了正则项的来源以及与其他概念的相关关系。
人工神经网络,简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或者计算模型。其实是一种与贝叶斯网络很像的一种算法。之前看过一些内容始终云里雾里,这次决定写一篇博客。弄懂这个基本原理,毕竟现在深度学习太火了。
本文转自雷锋网,原文《通过从零开始实现一个感知机模型,我学到了这些》,作者:恒亮,文章转载已获授权。感知器(英语:Perceptron)是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。本文介绍了搭建感知机模型的基本操作也包含了作者的一些心得。
关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。
HuggingFace开源语音识别模型Distil-Whisper,基于OpenAI的Whisper-V2模型蒸馏,速度快6倍,参数小49%!
Google反击OpenAI的大杀器!下一代语言模型PaLM 2:增加模型参数并不是提高大模型唯一的路径!
OpenAI开源GPT-2的子词标记化神器——tiktoken,一个超级快的(Byte Pair Encoder,BPE)字节对编码Python库
20条关于DeepSeek的FAQ解释DeepSeek发布了什么样的模型?为什么大家如此关注这些发布的模型?他们真的绕过CUDA限制,打破了Nvidia的护城河了吗?
OpenRouterAI:一个提供目前最优秀大模型API的网站,支持GPT-4 32k和Claude v2接口!