大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Batch Normalization(BN)是深度学习领域最重要的技巧之一,最早由Google的研究人员提出。这个技术可以大大提高深度学习网络的收敛速度。简单来说,BN就是将每一层网络进行归一化,就可以提高整个网络的训练速度,并打乱训练数据,提升精度。但是,BN的使用可以在很多地方,很多人最大的困惑是放在激活函数之前还是激活函数之后使用,著名机器学习领域的博主Santiago总结了这部分需要注意的内容。
GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!
重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口
重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!
华盛顿大学提出QLoRA及开源预训练模型Guanaco:将650亿参数规模的大模型微调的显存需求从780G降低到48G!单张显卡可用!
MistralAI开源240亿参数的多模态大模型Mistral-Small-3.1-24B:评测结果与GPT-4o-mini与Gemma 3 27B有来有回,开源且免费商用,支持24种语言