DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:分布
标签

「分布」相关文章

汇总「分布」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#分布
亚马逊近线性大规模模型训练加速库MiCS来了!

亚马逊近线性大规模模型训练加速库MiCS来了!

亚马逊近线性大规模模型训练加速库MiCS来了!

2022/06/29 19:55:061,355
#分布式训练#深度学习
Dask调度器简介

Dask调度器简介

Dask支持多种调度器,从单线程、多线程、多进程到本地分布式和集群分布式,各种调度器在不同情况下有不同的作用,本文来源于Dask官方文档的翻译,主要向大家介绍这五种调度器的使用情景和方式。最后提供了如何在不同情境下设置Dask调度器的方法。

2020/05/24 18:34:066,878
#Dask#Python#分布式处理
Dask的Merge操作性能对比

Dask的Merge操作性能对比

在前面的博客中,我们已经对`Dask`做了一点简单的介绍了,在这篇博客中我们来对比一下`Dask`的`DataFrame`在不同条件下的运算性能,主要是连接操作的性能(merge)。

2020/05/24 18:32:523,729
#dask#python#分布式计算
通过命令行的方式建立Dask集群

通过命令行的方式建立Dask集群

Dask的集群启动创建也很简单,有好几种方式,最简单的是采用官方提供dask-scheduler和dask-worker命令行方式。本文描述如何使用命令行方法建立Dask集群。

2020/05/06 11:41:093,600
#dask#python#分布式编程
并行计算中如何提高处理效率——来自Dask的提示

并行计算中如何提高处理效率——来自Dask的提示

当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。

2020/03/31 15:43:314,246
#Dask#Python#分布式数据处理
Dask的本地集群配置和编程

Dask的本地集群配置和编程

Dask提供了多种分布式调度器,当缺少多台服务器时候,也可以通过本地集群来实现单机分布式的计算。这篇博客主要就是介绍如何实现Dask的单机分布式调度器。第一小节是简介,第二节是单机调度器的简写版本,第三节是单机调度器的完整版本,第四节是使用的一些示例。

2020/03/31 14:25:105,282
#Dask#Python#分布式处理
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

2019/02/14 15:46:1012,180
#变分推断#指数分布族
多项式分布的贝叶斯推断

多项式分布的贝叶斯推断

多项式分布是非常常见的分布,他是二项分布在多维上的推广。例如掷骰子结果中,1-6点出现的次数就是一个多项式分布。多项式分布在如主题建模中非常常见,本文将讲述多项式分布的贝叶斯推导过程。

2017/12/01 22:28:466,810
#分布#多项式分布#统计基础
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet过程是一个随机过程,在非参数贝叶斯模型中有广泛运用,最常见的应用是Dirichlet过程混合模型

2017/11/14 15:06:41103,626
#Dirichlet分布#Dirichlet过程#无限混合模型
贝塔分布(Beta Distribution)简介及其应用

贝塔分布(Beta Distribution)简介及其应用

贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。

2017/11/08 11:16:1897,201
#BetaDistribution#Beta分布#推断
Wishart分布简介

Wishart分布简介

Wishart分布在多元高斯的贝叶斯推断中非常重要。它通常作为正态分布的协方差矩阵的逆矩阵的共轭先验存在。这篇博客将详细讲述Wishart分布及其作用。

2017/11/04 09:29:4639,959
#Wishart分布#分布#多元正态分布
多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导

2017/11/04 09:29:3712,460
#多元正态分布#统计
高斯分布的贝叶斯推断总结

高斯分布的贝叶斯推断总结

高斯分布是最常见的分布,也是数据挖掘和人工智能中相关统计学习方法所涉及到的最重要的分布之一。使用贝叶斯理论进行统计推断是目前最流行的推断方式。

2017/11/04 09:25:067,213
#正态分布#统计#高斯分布
矩母函数简介(Moment-generating function)

矩母函数简介(Moment-generating function)

在统计学中,矩母函数是一个关于随机变量的实值函数,它可以替代密度函数来描述分布。也就是说,出了概率密度函数外,我们也可以通过矩母函数来描述分布。

2017/10/20 11:44:1864,214
#分布#统计
beta分布的采样或抽样(java程序)

beta分布的采样或抽样(java程序)

beta分布采样

2017/05/12 15:47:044,638
#beta分布采样
Dirichlet Tree Distribution(狄利克雷树分布)

Dirichlet Tree Distribution(狄利克雷树分布)

狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活

2017/02/06 21:17:005,737
#Dirichlet#分布#统计基础
多元高斯分布(多元正态分布)简介

多元高斯分布(多元正态分布)简介

高斯分布是一种非常常见的分布,对于一元高斯分布我们比较熟悉,对于高斯分布的多元形式有很多人不太理解。这篇博客的材料主要来源Andrew Ng在斯坦福机器学习课的材料。

2017-01-28 23:02:4336,769
#正态分布#统计基础#高斯分布
12
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

对偶规划问题复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型数据特征处理之特征哈希(Feature Hashing)[翻译]当推荐系统遇上深度学习使用Spring Security进行登录验证通用基座大模型是否可以超越领域专有大模型?微软最新论文证明这是可以的!微软最新动态Prompt技术——MedPrompt详解常用的SQL语句总结关于GPT-4的多模态版本最新消息:可能的代号是Gobi,也许会比Google下一代LLM的Gemini更早发布自己制作电影不是梦,视频生成大模型的巨大进步!OpenAI发布第二代视频生成大模型Sora2:物理规律符合率达到88%,可以同步生成音频!物理真实感与声音控制全面突破学术工具

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介