大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
少量标记的学习(Few-shot learning)是一种在较少标注数据集中进行模型训练的一种学习方法。为了解决大量标注数据难以获取的情况,利用预训练模型,在少量标记的数据中进行微调是一种新的帮助我们进行模型训练的方法。而就在昨天,Hugging Face发布了一个新的语句transformers(Sentence Transformers)框架,可以针对少量标记数据进行模型微调以获取很好的效果。
重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口
GPQA: 可以防止使用谷歌作弊的研究生级别难度的大模型专业能力评测基准(A Graduate-Level Google-Proof Q&A Benchmark)
重磅!阿里开源325亿参数规模的推理大模型QwQ-32B:性能接近DeepSeek R1满血版,参数更低,免费商用授权!
OpenAI官方教程:如何针对大模型微调以及微调后模型出现的常见问题分析和解决思路~以GPT-3.5微调为例
阿里开源截止目前为止参数规模最大的Qwen1.5-110B模型:MMLU评测接近Llama-3-70B,略超Mixtral-8×22B!