大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
大语言模型的训练是一个十分复杂的技术,不仅涉及到模型的开发与部署,还涉及到数据的获取。与常规的算法模型不同的是,大语言模型通常需要大量的数据处理步骤。本文是根据英国一位自动工程师总结的大语言模型训练之前的数据处理步骤和决策过程。
当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。
6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择
DeepSeekAI开源国产第一个基于混合专家技术的大模型:DeepSeekMoE-16B,未来还有1450亿参数的MoE大模型
100天搞定机器学习(100-Days-Of-ML)(一)数据预处理
分解机(Factorization Machine, FM)模型简介以及如何使用SGD、ALS和MCMC求解分解机
OpenAI开源大模型调测工具Transformer Debugger(TDB):可以在训练大模型之前理解模型的运行情况并干预