
AIME 2026:基于2026年美国数学邀请赛的大模型数学能力评估基准
AIME 2026 是基于美国数学邀请赛(American Invitational Mathematics Examination)2026 年问题的评测基准,用于评估大语言模型在高中水平数学推理方面的表现。该基准包含 15 个问题,覆盖代数、几何、数论和组合数学等领域。模型通过生成答案并与标准答案比较来计算准确率。
加载中...
汇总「数学」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

AIME 2026 是基于美国数学邀请赛(American Invitational Mathematics Examination)2026 年问题的评测基准,用于评估大语言模型在高中水平数学推理方面的表现。该基准包含 15 个问题,覆盖代数、几何、数论和组合数学等领域。模型通过生成答案并与标准答案比较来计算准确率。

IMO-Bench 是 Google DeepMind 开发的一套基准测试套件,针对国际数学奥林匹克(IMO)水平的数学问题设计,用于评估大型语言模型在数学推理方面的能力。该基准包括三个子基准:AnswerBench、ProofBench 和 GradingBench,涵盖从短答案验证到完整证明生成和评分的全过程。发布于 2025 年 11 月,该基准通过专家审核的问题集,帮助模型实现 IMO 金牌级别的性能,并提供自动评分机制以支持大规模评估。

FrontierMath是一个由Epoch AI开发的基准测试套件,包含数百个原创的数学问题。这些问题由专家数学家设计和审核,覆盖现代数学的主要分支,如数论、实分析、代数几何和范畴论。每个问题通常需要相关领域研究人员投入数小时至数天的努力来解决。基准采用未发表的问题和自动化验证机制,以减少数据污染风险并确保评估可靠性。当前最先进的AI模型在该基准上的解决率低于2%,这反映出AI在处理专家级数学推理时的局限性。该基准旨在为AI系统向研究级数学能力进步提供量化指标。

在衡量大语言模型(LLM)智能水平的众多方法中,除了常见的常识推理、专业领域测评外,还有一个正在兴起且极具挑战性的方向——算法问题求解。在这一领域,几乎没有哪项比赛能比 国际信息学奥林匹克(International Olympiad in Informatics,简称 IOI) 更具权威性与含金量。

几个小时前,OpenAI的研究人员披露,其一款内部实验性的大语言模型,在模拟的国际数学奥林匹克(International Math Olympiad ,IMO)竞赛2025中取得了金牌水平的成绩。这是一个里程碑式的突破,因为IMO被认为是衡量创造性数学推理能力的巅峰,远超以往任何AI基准测试。这项成就并非通过专门针对数学的“窄”方法实现,而是源于通用人工智能研究的根本性突破,尤其是在处理难以验证的任务和长时间推理方面。

在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。

WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!

抽取样本方差的分布可以帮助我们生成很多其他分布的样本,例如生成一元高斯分布的样本就是可以通过方差分布来产生。这篇博客将描述如何抽取样本方差的分布。