DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:训练技术
标签

「训练技术」相关文章

汇总「训练技术」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#训练技术
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

2023/05/31 00:33:363,468
#tokens#大语言模型
深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?

深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?

在深度学习训练中,由于数据太大,现在的训练一般是按照一个批次的数据进行训练。批次大小(batch size)的设置在很多论文或者教程中都提示要设置为$2^n$,例如16、32等,这样可能会在现有的硬件中获得更好的性能。但是,目前似乎没有人进行过实际的测试,例如32的batch size与33的batch size性能到底有多大差别?德国的Thomas Bierhance做了一系列实验,以验证批次大小设置为2的幂次方是不是真的可以加速。

2022/07/05 22:28:322,854
#深度学习#训练技术

专题合集

RAG(检索增强生成)
Long Context 长上下文
AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • Artificial Analysis报告显示中国AI产业技术突破,已经与美国形成全球双极主导
  • 阿里巴巴的第二代通义千问可能即将发布:Qwen2相关信息已经提交HuggingFace官方的transformers库
  • MistralAI发布全新编程大模型:24B开源Devstral Small 1.1在SWE-Bench Verified评分超过旧版DeepSeek R1,编程大模型新的替代
  • 全球最大(最挣钱)的十大开源企业
  • 大模型追踪利器!斯坦福大学发布基础大模型追踪图谱Ecosystem Graphs
  • 为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)
  • Claude开始转向收费模式!推出Claude Pro,定价20美元一个月解锁PDF理解最强大模型的能力~
  • 使用LangChain做大模型开发的一些问题:来自Hacker News的激烈讨论~