大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
在GPT-4这种超大基座模型发布之后,一个非常活跃的方向是专有模型的发展。即一个普遍的观点认为,基座大模型虽然有很好的通用基础知识,但是对于专有的领域如医学、金融领域等,缺少专门的语料训练,因此可能表现并不那么好。如果我们使用专有数据训练一个领域大模型可能是一种非常好的思路,也是一种非常理想的商业策略。但是,微软最新的一个研究表明,通用基座大模型如果使用恰当的prompt,也许并不比专有模型差!同时,他们还提出了一个非常新颖的动态prompt生成策略,结合了领域数据,非常值得大家参考。
StabilityAI是当前最流行的开源文本生成图像大模型Stable Diffusion背后的公司。这家公司在文本生成图片和文本生成视频方面开源了诸多的大模型。其中,Stable Diffusion是目前使用人数最多的开源文本生成图像大模型。就在刚才,StabilityAI又发布了一个全新的实时的文本生成图像大模型Stable Diffusion XL Turbo,这个最新的模型在A100上生成一张图片只需要0.207秒!
OpenAI的董事会上周五开除Sam Altman,同日其创始人Greg Brockman,这件事引起了轩然大波。周末各方消息显示投资人施压董事会,要求召回Sam。本来大家以为Sam重回OpenAI。但是最新消息,OpenAI找了新的CEO,Sam与Greg等人加入微软成立新的团队。
最近自定义GPTs非常火热,出现了大量的自定义GPT,可以完成各种各样的有趣的任务。DataLearnerAI目前也创建了一个DataLearnerAI-GPT,目前可以回答大模型在不同评测任务上的得分结果。这些回答是基于OpenLLMLeaderboard数据回答的。未来会考虑增加更多信息,包括DataLearner网站上所有的大模型博客和技术介绍。
GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。
基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。
OpenAI在发布了多模态的GPT-4V(GPT-4 with Vision)的接口,可以实现图像理解的功能(`Image-to-Text`)。这是OpenAI的第一个多模态接口,在以前的接口中,OpenAI都是文本大模型,相关的费用计算都是按照输入输出的tokens计算,虽然与一个单词多少钱有一点差异,但是也算直观。而GPT-4V是一个图像理解的接口,这里的费用计算不像文本的tokens那么直观,那么这个接口的费用计算逻辑是什么?这个计算逻辑透露了什么样的模型架构信息?本文将介绍这个问题。
就在刚刚,有网友发现OpenAI的官方的文档接口更新中增加了128K的超长上下文版本,命名为GPT-4-128K-Turbo!
国产大语言模型的开源领域一直是很多企业或者科研机构都在卷的领域。最早,智谱AI开源ChatGLM-6B之后,国产大模型的开源就开始不断发展。早期大模型开源的参数规模一直在60-70亿参数规模,随着后续阿里千问系列的140亿参数的模型开源以及智源340亿参数模型开源之后,元象科技开源650亿参数规模的大语言模型XVERSE-65B,将国产开源大模型的参数规模提高到新的台阶。
尽管OpenAI最早也是马斯克和别人一起创立,由于各种原因分道扬镳之后马斯克也没有对相关产品感兴趣,直到ChatGPT风卷全球之后,马斯克与OpenAI的人公开吵了几次之后成立了这家公司。半年后的现在,马斯克透露xAI即将发布它的首个大模型Grōk AI。而一位老哥已经透露了该模型的一些细节。
xAI是马斯克在2023年3月份创办的一家大模型初创企业。因为ChatGPT过于火爆,离开OpenAI之后马斯克又再次开始推出大模型,就是这个Grok。xAI今天也宣布了Grok模型的细节。其在多个知名榜单评测上的得分结果超过了ChatGPT-3.5水平。本文详细介绍一下这个模型。
ChatGPT的发展速度很快,在前面已经介绍过ChatGPT即将推出的Team订阅计划和新界面,包括对接自定义数据和自定义接口等。此外,DataLearnerAI还发现ChatGPT即将推出关联APP的能力,截图显示,目前已经测试了对接Google Drive和Microsoft 365两个。
ChatGPT是当前大模型服务最前沿和风向标,每一次改动都会引起巨大的关注。此前,在ChatGPT的js脚本中就隐藏了即将发布的ChatGPT Team计划。而现在,新的ChatGPT UI代码和功能也被发现。新的GPT除了界面的巨大变化外,还有一个类似自定义AI Agent能力,可以直接接入自己的私有数据和API接口对外提供服务!十分震惊!
语音识别在实际应用中有非常多的应用。早先,OpenAI发布的Whisper模型是目前语音识别模型中最受关注的一类,也很可能是目前ChatGPT客户端语音识别背后的模型。HuggingFace基于Whisper训练并开源了一个全新的Distil-Whisper,它比Whisper-v2速度快6倍,参数小49%,而实际效果几乎没有区别。
检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。
HuggingFace开源语音识别模型Distil-Whisper,基于OpenAI的Whisper-V2模型蒸馏,速度快6倍,参数小49%!
彭博社发布金融领域的ChatGPT模型——BloombergGPT
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果
指标函数(Metrics Function)和损失函数(Loss Function)的区别是什么?
需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~
Sam Altman宣布未来几周将发布GPT-4.5,几个月后发布GPT-5,未来免费用户也可以无限量使用GPT-5!
AI Agent进展再进一步!Anthropic发布大模型上下文连接访问协议MCP:让任何资源快速变成大模型的工具,突破大模型的能力边界!