大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
XVERSE-13B是元象开源的一个大语言模型,发布一周后就登顶HuggingFace流行趋势榜。该模型最大的特点是支持多语言,其中文和英文水平都十分优异,在评测结果上超过了Baichuan-13B,与ChatGLM2-12B差不多,不过ChatGLM2-12B是收费模型,而XVERSE-13B是免费商用授权!
WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!
文中整理和总结了几个关于开源大模型微调方面的问题,答案主要来自gpt4 + google,如果其中部分问题的答案不准确,烦劳指正 (文中引用了外部资源链接,如果涉及版权问题,烦劳联系作者删除)
在过去的几年里,我们看到了AI在图像、视频和文本生成方面的巨大进步。然而,音频生成领域的进展却相对滞后。MetaAI这次再为开源贡献重磅产品:AudioCraft,一个支持多个音频生成模型的音频生成开发框架。
ChatGPT是属于生成式AI的一种应用。由于其强大的效果已经变成了当前最主流的一种AI方案。而构建生成式AI应用的一个重要方向是构建友好的web形态的demo让用户能快速体验。Gradio就是这样一种开源方案,也是当前最流行的一种快速构建AI Web应用的方案。昨天吴恩达的DeepLearningAI与HuggingFace共同推出了最新的一期短课程《Building Generative AI Applications with Gradio》,教大家如何使用Gradio快速构建生成式AI的应用。
ChatGPT的Code Interpreter插件让ChatGPT突破了大语言模型本身只能做文本处理的限制,使其可以通过生成并执行Python代码来实现强大的数据分析、图片生成、视频数据处理等操作,大大拓展了ChatGPT的实用范围和价值。在此前的文章中,我们已经分析了Code Interpreter插件的官方实现。而今天,LangChain的官方博客也推出了一种类似的开源方案,让开源模型也可以实现ChatGPT的Code Interperter插件。我们简要描述一下这个方案。
Anthropic是一家专注于人工智能(AI)研究的公司,由OpenAI的前首席科学家Ilya Sutskever和Dario Amodei共同创立。Claude是Anthropic公司发布的基于transformer架构的大语言模型,被认为是最接近ChatGPT的商业产品。今天,Anthropic宣布Claude 2正式开始上架。
Code Interpreter是ChatGPT官方提供的一个插件。使用这个插件之后,ChatGPT可以通过生成Python代码来解决你的问题。在上周,Code Interperter已经完全开放给所有的付费用户,在大家使用了一段时间之后,已经有很多人通过机智的prompt来获取了Code Interpreter背后的执行环境和系统prompt信息等。本文针对这些获取的信息做一个总结,供大家参考。
大模型微调依然是针对大量私有数据或者特定领域不可缺少的方法。就在前不久,LightningAI发布了一个轻量级大模型微调库Lit-Parrot,仅需一行代码即可微调当前开源大模型。
RedPajama模型是TOGETHER发布的一个开源可商用的大模型。2023年6月6日,TOGETHER在官方宣布该模型完成训练,经过测试,该模型目前超过所有7B规模的大模型,比LLaMA-7B和Falcon-7B的效果还要好!
在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。
前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!
虽然LLM在很多任务上很好用,但是实际应用中我们常见的文本分类、文本标注等工作目前却依然缺少一个可以利用LLM能力的好方法。LLM的强大并没有在工程落地上比肩传统的机器学习处理框架。上周,一个叫Scikit-LLM新的开源项目发布,将传统优秀的Scikit-learn框架与LLM结合,带来了LLM落地的新方法。
今天,Meta的首席AI科学家Yann LeCun在推特上宣布了MetaAI的最新研究成果:MMS,一个支持1107种语言的自动语音识别模型和语音合成模型,该模型自动语音识别的单词错误率只有OpenAI开源的Whisper的一半!但是支持的语言却有1107种,是Whisper的11倍!代码与预训练结果已开源,不过不可以商用哦~
德国的一位博士生开源了一个使用LoRA(Low Rank Adaptation)技术和PEFT(Parameter Efficient Fine Tuning)方法对Whisper模型进行高效微调的项目。可以让大家在消费级显卡(显存8GB)上对OpenAI开源的WhisperV2模型进行微调!
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?
2023年4月业界发布的重要20多个AI模型总结:OpenAssistant、Segment Anything Model、StableLM、AudioGPT等
人工神经网络(Artificial Neural Network)算法简介
总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量
支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3