大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
OpenAI在发布了多模态的GPT-4V(GPT-4 with Vision)的接口,可以实现图像理解的功能(`Image-to-Text`)。这是OpenAI的第一个多模态接口,在以前的接口中,OpenAI都是文本大模型,相关的费用计算都是按照输入输出的tokens计算,虽然与一个单词多少钱有一点差异,但是也算直观。而GPT-4V是一个图像理解的接口,这里的费用计算不像文本的tokens那么直观,那么这个接口的费用计算逻辑是什么?这个计算逻辑透露了什么样的模型架构信息?本文将介绍这个问题。
Anubis——纽约大学计算机学生建立的学习管理系统和CloudIDE简介
Transformer蓝图:Transformer 神经网络架构的综合指南——万字长文、20多个图片介绍大语言模型主流架构Transformer的发展历史、现状和未来结果
GPT-4在11月份以来变懒的原因可能已经找到:大模型可能会在节假日期间变得不愿意干活,工作日期间却更加高效
对比关系生成模型(Comparative Relation Generative Model)
Llama3相比较前两代的模型(Llama1和Llama2)有哪些升级?几张图简单总结Llama3的训练成本、训练时间、模型架构升级等情况
为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解
如何让大模型(GPT)按照特定的JSON格式输出?OpenAI给出新答案:GPT模型现在可以支持更加友好和精确的格式化JSON输出了!