大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
深度学习是目前最火的算法领域。他在诸多任务中取得的骄人成绩使得其进化越来越好。本文收集深度学习中的经典算法,以及相关的解释和代码实现。
卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。
GoogLeNet是谷歌在2014年提出的一种CNN深度学习方法,它赢得了2014年ILSVRC的冠军,其错误率要低于当时的VGGNet。与之前的深度学习网络思路不同,之前的CNN网络的主要目标还是加深网络的深度,而GoogLeNet则提出了一种新的结构,称之为inception。GoogLeNet利用inception结构组成了一个22层的巨大的网络,但是其参数却比之前的如AlexNet网络低很多。是一种非常优秀的CNN结构。
VGGNet(Visual Geometry Group)是2014年又一个经典的卷积神经网络。VGGNet最主要的目标是试图回答“如何设计网络结构”的问题。随着AlexNet提出,很多人开始利用卷积神经网络来解决图像识别的问题。一般的做法都是重复几层卷积网络,每个卷积网络之后接一些池化层,最后再加上几个全连接层。而VGGNet的提出,给这些结构设计带来了一些标准参考。
1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。
之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:
在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。
使用预训练模型处理NLP任务是目前深度学习中一个非常火热的领域。本文总结了8个顶级的预训练模型,并提供了每个模型相关的资源(包括官方文档、Github代码和别人已经基于这些模型预训练好的模型等)。
Encoder-Decoder的深度学习架构是目前非常流行的神经网络架构,在许多的任务上都取得了很好的成绩。在之前的博客中,我们也详细介绍了该架构(参见深度学习之Encoder-Decoder架构)。本篇博客将详细讲述Attention机制。
深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。
序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。
您刚刚经历了一个耗时的过程,将一堆数据加载到python对象中。 也许你从数千个网站上爬取了数据。也许你计算了pi的数值。如果您的笔记本电脑电池耗尽或python崩溃,您的信息将丢失。 Pickling允许您将python对象保存为硬盘驱动器上的二进制文件。 在你pickle你的对象后,你可以结束你的python会话,重新启动你的计算机,然后再次将你的对象加载到python中。
广告分配问题属于运筹中的优化问题。一般情况下,我们期望有个最大化收益,但同时需要保证合约的完成。因此,这是一个带不等式约束的最优化问题。由于广告数量和用户数量很多,因此,求解的难度很高。在这篇文章中,作者推导了原问题的拉格朗日函数的系数之间的关系,大大降低了求解的难度。这里将简要介绍原理和推导过程。
KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。