大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
机器学习的特征工程是将原始的输入数据转换成特征,以便于更好的表示潜在的问题,并有助于提高预测模型准确性的过程。找出合适的特征是很困难且耗时的工作,它需要专家知识,而应用机器学习基本也可以理解成特征工程。
集成学习(Ensemble Learning)是解决有监督机器学习的一类方法,它的思路是基于多个学习算法的集成来获取一个更好的预测结果。本文将介绍相关概念,并对一些注意事项进行总结。
随着互联网的高速发展,人类进入了一个信息爆炸的时代,每个人的生活都充满了结构化和非结构化的数据。另外,随着以博客、社交网络、基于位置的服务LBS为代表的新型信息发布方式的不断涌现,以及云计算、物联网技术的兴起,数据正以前所未有的速度在不断地增长和积累,数据已经渗透到当今每一个行业和业务职能领域成为重要的产生因素,以数据为驱动的大数据时代已经不可避免地到来。本文主要围绕大数据特征、处理系统、以及大数据分析来阐述大数据环境下的数据分析在思想、流程、方法等方面的转变,以及围绕此主题而出现的相关关键技术与方法。
本文是Effective Java第三版笔记的第七个之消除过期的对象引用,Item 7: Eliminate obsolete object references
当我们训练深度学习神经网络的时候通常希望能获得最好的泛化性能(generalization performance,即可以很好地拟合数据)。但是所有的标准深度学习神经网络结构如全连接多层感知机都很容易过拟合:当网络在训练集上表现越来越好,错误率越来越低的时候,实际上在某一刻,它在测试集的表现已经开始变差。早停法就是一种防止深度学习网络模型过拟合的方法。
OpenAI最新的文本生成图像大模型DALL·E3发布!生成的图像不忽略每一个细节的文本!
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用
在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)
简单几步教你如何在搭建并使用DALL·E开源版本来基于文字生成图片
重磅!PyTorch官宣2.0版本即将发布,最新torch.compile特性说明!
平衡二叉树之红黑树(Red-Black Tree)简介及Java实现