统计、机器学习与编程知识的原创博客
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet过程是一个随机过程,在非参数贝叶斯模型中有广泛运用,最常见的应用是Dirichlet过程混合模型

小木 44897 2017/11/14 15:06:41 Dirichlet分布/Dirichlet过程/无限混合模型/混合模型/贝叶斯模型
Generative Adversarial Networks 生成对抗网络的简单理解

这几年在机器学习领域最亮最火最耀眼的新思想就是生成对抗网络了。这一思想不光催生了很多篇理论论文,也带来了层出不穷的实际应用。Yann LeCun 本人也曾毫不吝啬地称赞过:这是这几年最棒的想法!

somTian 14296 2017/03/08 09:12:02 GAN/深度学习/生成对抗网络
机器学习中的高斯过程

关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。

小木 4382 2016-04-07 08:14:01 机器学习/统计/非参数模型/高斯过程
贝塔分布(Beta Distribution)简介及其应用

贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。

小木 4288 2017/11/08 11:16:18 BetaDistribution/Beta分布/推断/统计
多元高斯分布(多元正态分布)简介

高斯分布是一种非常常见的分布,对于一元高斯分布我们比较熟悉,对于高斯分布的多元形式有很多人不太理解。这篇博客的材料主要来源Andrew Ng在斯坦福机器学习课的材料。

小木 3831 2017-01-28 23:02:43 正态分布/统计基础/高斯分布
使用R语言进行K-means聚类并分析结果

R语言进行数据分析非常简单方便,在这篇博客中,我们将描述如何使用R语言进行K-means聚类分析,并分析结果。

小木 2304 2017/05/04 21:01:00 K-means/R语言/聚类
生成对抗网络简介(包含TensorFlow代码示例)【翻译】

这篇博客是AYLIEN上的一篇关于生成对抗网络的简单介绍,包含非常简洁的代码示例。是入门非常好的材料。

小木 2247 2017/05/15 14:40:57 TensorFlow/深度学习/生成对抗网络/神经网络
张华平分词(又名中科院分词/NLPIR分词)的使用(Java版本)

张华平汉语分词系统,现称为NLPIR汉语分词系统,是优秀的中文分词系统。但其使用却有一些配置上的设置是新手可能遇到的一个困难。这里我们简单介绍使用Eclipse导入NLPIR分词系统工程的使用方法。

小木 2014 2017/03/03 20:31:23 分词/工具/编程
层次贝叶斯模型(一) 之 构建参数化的先验分布

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。

小木 1984 2016-04-07 08:19:13 层次模型/统计推断/贝叶斯模型
狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)

狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)是一种非参数贝叶斯模型,它可以理解为一种聚类方法,但是不需要指定类别数量,它可以从数据中推断簇的数量。这篇博客将描述该模型及其求解过程。

小木 1978 2016-08-19 18:04:56 dirichletprocessmixturemodel/dpmm/混合模型/非参数贝叶斯
推荐系统之概率矩阵分解的详细推导过程(Probabilistic Matrix Factorization,PMF)

本篇博客详细说明了概率矩阵分解(Probabilistic Matrix Factorization,PMF)的推导过程

小木 1745 2017/11/04 09:36:06 PMF/推荐/概率矩阵分解/矩阵分解