Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。

小木 265 2020/05/31 17:42:24 dask/dataframe
Dask调度器简介

Dask支持多种调度器,从单线程、多线程、多进程到本地分布式和集群分布式,各种调度器在不同情况下有不同的作用,本文来源于Dask官方文档的翻译,主要向大家介绍这五种调度器的使用情景和方式。最后提供了如何在不同情境下设置Dask调度器的方法。

小木 601 2020/05/24 18:34:06 Dask/Python/分布式处理
Dask的Merge操作性能对比

在前面的博客中,我们已经对`Dask`做了一点简单的介绍了,在这篇博客中我们来对比一下`Dask`的`DataFrame`在不同条件下的运算性能,主要是连接操作的性能(merge)。

小木 246 2020/05/24 18:32:52 dask/python/分布式计算
Dask分布式任务中包含写文件的方法时候,程序挂起不结束的解决方案

使用Dask进行分布式处理的时候一个最常见的场景是有很多个文件,每个文件由一个进程处理。这种操作经常会遇到一个程序挂起的问题,使得程序永远运行,无法结束。本文描述如何解决。

小木 272 2020/05/08 20:25:14 dask/python
pandas.DataFrame.to_csv和dask.dataframe.to_csv在windows下保存csv文件出现多个换行结果

使用pandas的DataFrame和dask的DataFrame保存数据到csv文件时候会出现两个换行符的情况。本文描述如何解决。

小木 339 2020/05/08 17:20:04 dask/pandas/python
通过命令行的方式建立Dask集群

Dask的集群启动创建也很简单,有好几种方式,最简单的是采用官方提供dask-scheduler和dask-worker命令行方式。本文描述如何使用命令行方法建立Dask集群。

小木 275 2020/05/06 11:41:09 dask/python/分布式编程
并行计算中如何提高处理效率——来自Dask的提示

当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。

小木 469 2020/03/31 15:43:31 Dask/Python/分布式数据处理
Dask的本地集群配置和编程

Dask提供了多种分布式调度器,当缺少多台服务器时候,也可以通过本地集群来实现单机分布式的计算。这篇博客主要就是介绍如何实现Dask的单机分布式调度器。第一小节是简介,第二节是单机调度器的简写版本,第三节是单机调度器的完整版本,第四节是使用的一些示例。

小木 457 2020/03/31 14:25:10 Dask/Python/分布式处理/编程