大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
在GPT-4这种超大基座模型发布之后,一个非常活跃的方向是专有模型的发展。即一个普遍的观点认为,基座大模型虽然有很好的通用基础知识,但是对于专有的领域如医学、金融领域等,缺少专门的语料训练,因此可能表现并不那么好。如果我们使用专有数据训练一个领域大模型可能是一种非常好的思路,也是一种非常理想的商业策略。但是,微软最新的一个研究表明,通用基座大模型如果使用恰当的prompt,也许并不比专有模型差!同时,他们还提出了一个非常新颖的动态prompt生成策略,结合了领域数据,非常值得大家参考。
RedPajama模型是TOGETHER发布的一个开源可商用的大模型。2023年6月6日,TOGETHER在官方宣布该模型完成训练,经过测试,该模型目前超过所有7B规模的大模型,比LLaMA-7B和Falcon-7B的效果还要好!
Dirichlet Process and Stick-Breaking(DP的Stick-breaking 构造)
Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。
狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)是一种非参数贝叶斯模型,它可以理解为一种聚类方法,但是不需要指定类别数量,它可以从数据中推断簇的数量。这篇博客将描述该模型及其求解过程。
使用kaggle房价预测的实例说明预测算法中OneHotEncoder、LabelEncoder与OrdinalEncoder的使用及其差异
大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好
普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
Microsoft Visual C++ 14.0 is required 的解决方案
一文总结13个国内外ChatGPT平替产品:是时候可以不那么依赖ChatGPT了~
可能是过去三十年来编程语言最大的革新:新的面向AI的编程语言Mojo发布~
OpenAI再度泄露重磅更新,GPT-4即将发布128K的超长上下文版本以及多模态版本,价格下降一大半!
三年后OpenAI再次发布自动语音识别和语音合成大模型(替换Whisper系列):不开源,仅提供API,英文错字率已经下降到2.46%
GPT-4.5发布时间越来越近,OpenAI安卓客户端泄露GPT-4.5即将推出,Pro用户可以做好准备,Plus用户请往后